$\underset{\text{Due Tuesday, April 23rd at }1:00\text{pm}}{\text{Ma }116\text{c}} \underset{\text{Due Tuesday, April 23rd at }1:00\text{pm}}{\text{Homework}} \#1$

- 1) Supply the proofs, left out in lecture, of the following facts about the class $\mathbf{WF} = \bigcup_{\alpha} R(\alpha)$ of wellfounded sets.
 - i. For all ordinals α , $R(\alpha)$ is transitive.
 - ii. For all ordinals $\beta \leq \alpha$, $R(\beta) \subseteq R(\alpha)$.

Fix $y \in \mathbf{WF}$.

- iii. For all $x \in y$, $x \in \mathbf{WF}$ and rank(x) < rank(y).
- iv. $rank(y) = sup\{rank(x) + 1 : x \in y\}.$

Verify by induction that, for every ordinal α we have

- v. $\alpha \in \mathbf{WF}$ and $\mathrm{rank}(\alpha) = \alpha$ and $R(\alpha) \cap \alpha = \alpha$.
- 2) Find a set A such that for every $n \in \omega$, $A \cup \bigcup A \cup \bigcup^2 A \cup \ldots \cup \bigcup^n A$ is not transitive.
- 3) Define $x\mathbf{R}y$ iff $x \in \text{tr cl}(y)$. Show that **R** is well-founded and set-like on **WF** (Hint: $x\mathbf{R}y$ implies $\operatorname{rank}(x) < \operatorname{rank}(y)$). Let **G** be the Mostowski collapsing function for **R** on **WF**. Show that $\mathbf{G}(x) =$ rank(x) for every x.
- 4) Define $x\mathbf{R}y$ iff $\langle x,1\rangle \in y$. Show that **R** is well-founded and set-like on **WF**. Let **G** be the Mostowski collapsing function for \mathbf{R} on \mathbf{WF} . Define \check{y} recursively by

$$\check{y} = \{ \langle \check{x}, 1 \rangle : x \in y \}$$

and show inductively that G(y) = y. Hence ran(G) = WF.