$\underset{\text{Due Thursday, May 9th at }1:00\text{pm}}{Ma}\,116c\,\, \underset{\text{Homework }\#2}{Homework}\,\#2$

- 1) Show that the following assertions are absolute (for any transitive model of a sufficient fragment of ZFC) by writing each one as a Δ_0 -formula.
 - i.) $z = \langle x, y \rangle$,
 - ii.) z is an ordered pair,
 - iii.) R is a relation,
 - iv.) $C = A \times B$.

For exercises (2) - (4), M denotes a countable transitive model of ZFC and \mathbb{P} denotes a partial order. If $\mathbb{P} \in M$, then G denotes a filter that is generic for \mathbb{P} over M.

2) $p \in \mathbb{P}$ is called an *atom* if

$$\neg \exists q, r \in \mathbb{P}(q \leq p \land r \leq p \land q \perp r)$$

 \mathbb{P} is non-atomic if \mathbb{P} has no atoms. Show that if $\mathbb{P} \in M$ and p is an atom of \mathbb{P} , then there is a filter $G \in M$ such that $p \in G$ and G intersects all dense subsets of \mathbb{P} .

- 3) Suppose that $\mathbb{P} \in M$ is non-atomic. Show that $\{G : G \text{ is } \mathbb{P}\text{-generic over } M\}$ has cardinality 2^{ω} .
- 4) If $\sigma, \tau \in M^{\mathbb{P}}$, show that $\sigma_G \cup \tau_G = (\sigma \cup \tau)_G$.