$\underset{\text{Due Thursday, May 23rd at 1:00pm}}{\text{Ma 116c Homework }\#3}$

Let M be a fixed ctm of ZFC.

- 1) As in class, let $\kappa \in M$ be such that $(\kappa \text{ is an uncountable cardinal})^M$, and let $\mathbb{P} = \operatorname{Fn}(\kappa \times \omega, 2)$. Let Gbe \mathbb{P} -generic over M, and let $f_G = \bigcup G$ be the associated function derived from G from $\kappa \times \omega$ to 2. Also as in class, for $\alpha \in \kappa$ define $f_{\alpha} : \omega \to 2$ to be the α -th section of f_{G} defined by $f_{\alpha}(n) = f_{G}(\alpha, n)$. Show that all of the functions f_{α} are new in the extension, i.e. for every $\alpha \in \kappa$ we have $f_{\alpha} \in M[G] \setminus M$.
- 2) Suppose $\mathbb{P} \in M$ and G is a filter for \mathbb{P} . Show that the following are equivalent:
 - i.) $G \cap D \neq \emptyset$ whenever $D \in M$ and D is dense in \mathbb{P} ,
 - ii.) $G \cap A \neq \emptyset$ whenever $A \in M$ and A is a maximal antichain in \mathbb{P} .
- 3) Assume $f: A \to M$ and $f \in M[G]$. Show that there is $B \in M$ such that $f: A \to B$.

Hint: Find τ such that $f = \tau_G$ and let

 $B = \{b : \exists p \in \mathbb{P}(p \Vdash \check{b} \in \operatorname{ran}(\tau))\}.$