
Ma 116c Homework #4

For seniors and grad students: Complete problems #1 and #2. The set is due Thursday, May 30th, at
1pm.

For frosh, sophomores, juniors: Complete all problems. The set is due Thursday, June 6th, at 1pm.

* * *

Definition. Suppose P and Q are posets. An isomorphism of P and Q is a bijection i : P → Q such that
i(1P) = 1Q and ∀p0, p1 ∈ P we have p0 ≤ p1 iff i(p0) ≤ i(p1). We say P and Q are isomorphic if there exists
an isomorphism i : P → Q.

1) Suppose κ is an infinite cardinal and λ ≤ κ. Show that Fn(κ× λ, 2) and Fn(κ, 2) are isomorphic.

Hint : Fix a bijection f : κ× λ → κ and use f to find an isomorphism.

* * *

For the next problem, you may take the following facts for granted.

Fact #1: Suppose i : P → Q is an isomorphism. For D ⊆ P, we have that D is dense in P iff i[D] is
dense in Q, where i[D] denotes the pointwise image of D.

Fact #2: Suppose M is a ctm of ZFC and P,Q ∈ M . Suppose further (P is isomorphic to Q)M (by
absoluteness of the notion of “being an isomorphism,” this means precisely that there is an isomorphism
i : P → Q such that i ∈ M). Suppose G is a P-generic filter over M . Then i[G] is a Q-generic filter over M .

Fact #3: Under the hypotheses of the previous fact, we have M [G] = M [i[G]]. That is, if P and Q are
isomorphic posets in M and i ∈ M is an isomorphism, then the extension of M by a generic filter G ⊆ P is
the same as the extension of M by the corresponding generic filter i[G] ⊆ Q.

2) Suppose GCH holds in M , and let P = Fn(ω5, 2)
M . Show that in M [G] we have 2κ = ω5 for all infinite

cardinals κ ≤ ω4.

Hint : By #1, P is isomorphic (in M) to Fn(ω5×κ, 2)M for all such κ. Now use the fact above and the
relevant theorems from class (plus the assumed cardinal arithmetic in M) to justify that 2κ is both
≥ ω5 and ≤ ω5 for all such κ.

* * *

We now outline a proof that ♢ can be forced over any ground model M . Recall that a ♢-sequence is a
sequence ⟨Sα : α < ω1⟩ such that

i. For every α < ω1, Sα ⊆ α,

ii. For every subset X ⊆ ω1, {α ∈ ω1 : Sα = X ∩ α} is stationary in ω1.

That is, for every X ⊆ ω1 the ♢-sequence correctly determines X ∩α stationarily often. ♢ asserts that a
♢-sequence exists.

Let P♢ be the poset consisting of countable sequences p that approximate a ♢-sequence. That is, let
P♢ = {p : p is a sequence of sets ⟨Sγ : γ < α⟩ of some length α < ω1 such that ∀γ < α we have Sγ ⊆ γ}.

For p ∈ P♢ we write l(p) for the length of p. We order p ≤ q if p extends q, that is if l(p) ≥ l(q) and
p ↾ l(q) = q.

Notational note: if p = ⟨Sγ : γ < α⟩ then l(p) = α, and if p = ⟨Sγ : γ ≤ α⟩ then l(p) = α + 1. In
particular, l(p) is the least ordinal α for which p does not specify a subset Sα of ω1.

Observe that P♢ is ω1-closed, since if p0 ≥ p1 ≥ p2 ≥ . . . is a countable length descending sequence of
elements of P♢ then p =

⋃
i pi is also an element of P♢ and lies below every pi.



3) Suppose M is a ctm of ZFC, and let P = PM
♢ . It is not hard to check (by a density argument) that in

any P-generic extension M [G] we have
⋃

G is a sequence ⟨Sα : α < ω1⟩ of length ω1. We wish to show
that

⋃
G is in fact a ♢-sequence in M [G].

It is sufficient to check the following. Suppose τ, σ ∈ MP are names such that, in M , for some p ∈ P
we have p ⊩ τ is a club in ω̌1 and σ ⊆ ω̌1. (So in any extension M [G] by G ∋ p we have C = τG is a
club in ω1 and X = σG is a subset of ω1.)

Show that, in M , there is q ≤ p such that q = ⟨Sγ : γ ≤ α⟩ and q ⊩ α̌ ∈ τ and σ ∩ α̌ = Šα.

Hint : We find such a q by induction in M . Let q0 = p. In V , find G0 ∋ q0 that is P-generic over M .
In M [G0], C0 = τG0

is a club and X0 = σG0
is a subset of ω1. Find α0 ≥ l(q0) with α0 ∈ C0 and let

S0 = X0 ∩ α0.

Note that since (P is ω1-closed)
M , P does not add countable subsets of ω1, so S0 ∈ M1.

Back in M , by the forcing theorem we can find q1 ≤ q0 that forces α̌0 ∈ τ and σ ∩ α̌0 = Š0. If
α0 ≥ l(q1), then extend q1 to q = ⟨Sγ : γ ≤ α0⟩ so that Sα0

= S0, otherwise arbitrarily. Then we’re
done. (Why?)

If α0 < l(q1) we repeat this process. Let G1 ∋ q1 be generic. In M [G1], we again have C1 = τG1
is a

club and X1 = σG1 is a subset of ω1. Find α1 ≥ l(q1) in C1 and now let S1 = X1 ∩ α1. And so on.

Either at some finite stage we find (in M) some qn+1 ≤ q0 forcing α̌n ∈ τ and σ ∩ α̌n = Šn with
αn ≥ l(qn+1), in which case we can find q ≤ qn+1 as desired, or the induction continues for infinitely
many stages. In the second case, let q′ =

⋃
n qn. Then l(q′) = α where α = supαn. Show we can find

q ≤ q′ of length α+ 1 which is as desired.

Commentary : It follows from (3) that ♢ holds in any P-generic extension M [G]. Here’s why. In M [G],
let

⋃
G = ⟨Sα : α < ω1⟩ be the generic sequence. We claim this is a ♢-sequence (in M [G]). To see this,

suppose X ⊆ ω1 (in M [G]). We want to show {α : X ∩ α = Sα} is stationary (in M [G]).
Suppose C ⊆ ω1 is club (in M [G]). Find names τ, σ such that τG = C and σG = X, and find p ∈ G such

that, in M , p ⊩ τ is club and σ ⊆ ω̌1. Then (3) (or really, the argument in (3) carried out below any p′ ≤ p)
shows that D = {q ≤ p: for some α < ω1, q = ⟨Sγ : γ ≤ α⟩ and q ⊩ α̌ ∈ τ and σ ∩ α̌ = Šα} is dense below p.
Hence there is q ∈ D ∩G. Then in M [G], α ∈ C and X ∩ α = Sα, i.e. {α : X ∩ α = Sα} intersects C. Since
X and C were arbitrary, {α : X ∩ α = Sα} is stationary, as desired.

We showed in 116b that ♢ implies both the CH and the existence of a Suslin tree. Thus in M [G] there
is a Suslin tree, whether or not there was such a tree in M .

1More explicitly: any countable subset S ⊆ ω1 in M [G] is a subset of some α < ω1, and is determined by its characteristic
function fS : α → 2. Since |α| < ω1 in M , by ω1-closure in M of P we have fS ∈ M . It follows S ∈ M .


