Ma 116¢ Homework #4

For seniors and grad students: Complete problems #1 and #2. The set is due Thursday, May 30th, at
1pm.

For frosh, sophomores, juniors: Complete all problems. The set is due Thursday, June 6th, at 1pm.

* % %k

Definition. Suppose P and Q are posets. An isomorphism of P and Q is a bijection i : P — Q such that
i(1p) = 1g and Vpo,p1 € P we have py < py iff i(po) < i(p1). We say P and Q are isomorphic if there exists
an isomorphism i : P — Q.

1) Suppose & is an infinite cardinal and A < k. Show that Fn(x x A,2) and Fn(k, 2) are isomorphic.

Hint: Fix a bijection f : k X A = x and use f to find an isomorphism.

* % %k

For the next problem, you may take the following facts for granted.

Fact #1: Suppose i : P — Q is an isomorphism. For D C P, we have that D is dense in P iff i[D] is
dense in Q, where i[D] denotes the pointwise image of D.

Fact #2: Suppose M is a ctm of ZFC and P,Q € M. Suppose further (PP is isomorphic to Q)™ (by
absoluteness of the notion of “being an isomorphism,” this means precisely that there is an isomorphism
i: P — Q such that ¢ € M). Suppose G is a P-generic filter over M. Then i[G] is a Q-generic filter over M.

Fact #3: Under the hypotheses of the previous fact, we have M[G] = M[i[G]]. That is, if P and Q are
isomorphic posets in M and i € M is an isomorphism, then the extension of M by a generic filter G C P is
the same as the extension of M by the corresponding generic filter i[G] C Q.

2) Suppose GCH holds in M, and let P = Fn(ws, 2)™. Show that in M[G] we have 2% = wj for all infinite
cardinals k < wy.

Hint: By #1, P is isomorphic (in M) to Fn(ws x #,2)™ for all such x. Now use the fact above and the
relevant theorems from class (plus the assumed cardinal arithmetic in M) to justify that 2% is both
> ws and < ws for all such «.

X ok Xk

We now outline a proof that { can be forced over any ground model M. Recall that a {-sequence is a
sequence (S, : @ < wy) such that

i. For every a < wy, Sy C
ii. For every subset X C wy, {a € wy : So = X Na} is stationary in w;.

That is, for every X C w; the {-sequence correctly determines X N « stationarily often. ¢ asserts that a
{Q-sequence exists.

Let Py be the poset consisting of countable sequences p that approximate a ¢-sequence. That is, let
Py = {p : p is a sequence of sets (S, : v < ) of some length a < w; such that Vy < a we have S, C v}.

For p € Py, we write I(p) for the length of p. We order p < ¢ if p extends ¢, that is if I(p) > I(q) and
plig) =q

Notational note: if p = (S, : v < a) then l(p) = o, and if p = (S, : v < a) then [(p) = o+ 1. In
particular, [(p) is the least ordinal « for which p does not specify a subset S, of ws.

Observe that Py is wi-closed, since if pg > p; > ps > ... is a countable length descending sequence of
elements of Py then p = J, p; is also an element of P, and lies below every p;.



3) Suppose M is a ctm of ZFC, and let P = ]P’é/[ . Tt is not hard to check (by a density argument) that in
any P-generic extension M[G] we have |G is a sequence (S, : @ < wy) of length w;. We wish to show
that (J G is in fact a {-sequence in M|[G].

It is sufficient to check the following. Suppose 7,0 € M" are names such that, in M, for some p € P
we have p IF 7 is a club in & and ¢ C ;. (So in any extension M[G] by G 3 p we have C = 7¢ is a
club in wy and X = og is a subset of w;.)

Show that, in M, there is ¢ < p such that ¢ = (S, :v < «a) and gl & € 7 and oNa=_5,.

Hint: We find such a ¢ by induction in M. Let ¢ = p. In V, find Gy 3 q¢ that is P-generic over M.
In M[Gyl, Co = 7¢, is a club and Xy = o, is a subset of wy. Find ag > I(go) with ag € Cp and let
So = XoNag.

Note that since (P is wi-closed)™ | P does not add countable subsets of wy, so Sy € M.

Back in M, by the forcing theorem we can find ¢; < o that forces dy € 7 and o Ny = Sy. If
ag > l(q1), then extend ¢1 to ¢ = (S, : v < ap) so that S, = Sp, otherwise arbitrarily. Then we're
done. (Why?)

If g < I(g1) we repeat this process. Let G 3 ¢ be generic. In M[G;], we again have C; = 7¢, is a
club and X; = o, is a subset of wy. Find a; > I(¢1) in C; and now let S; = X3 Na;. And so on.

Either at some finite stage we find (in M) some ¢,+1 < qo forcing o, € 7 and o N a,, = S, with
&y > U(gn+1), in which case we can find ¢ < g,+1 as desired, or the induction continues for infinitely
many stages. In the second case, let ¢’ = J,, ¢n. Then I(¢") = o where o = sup «v,. Show we can find
q < ¢’ of length a + 1 which is as desired.

Commentary: Tt follows from (3) that ¢ holds in any P-generic extension M[G]. Here’s why. In M[G],
let UG = (So : @ < wy) be the generic sequence. We claim this is a ¢-sequence (in M[G]). To see this,
suppose X C wy (in M[G]). We want to show {a: X N = S, } is stationary (in M[G]).

Suppose C' C wy is club (in M[G]). Find names 7,0 such that 7¢ = C and o¢ = X, and find p € G such
that, in M, p IF 7 is club and ¢ C ;. Then (3) (or really, the argument in (3) carried out below any p’ < p)
shows that D = {q < p: for some a < w1, ¢ = (S, :v<a)and ¢l- & € 7 and cN& = S,} is dense below p.
Hence there is ¢ € DNG. Then in M[G], @ € C and X Na = Sy, i.e. {a: X Na = 5,} intersects C. Since
X and C were arbitrary, {o: X Na = S, } is stationary, as desired.

We showed in 116b that ¢ implies both the CH and the existence of a Suslin tree. Thus in M[G] there
is a Suslin tree, whether or not there was such a tree in M.

IMore explicitly: any countable subset S C w1 in M[G] is a subset of some a < w1, and is determined by its characteristic
function fs : a — 2. Since |a| < wi in M, by wi-closure in M of P we have fg € M. It follows S € M.



