Ma/CS 117a HW #2 Due Tuesday, October 22nd, at 1pm

1) Let A(n,x) be the Ackermann function. Consider the graph $G \subseteq \mathbb{N}^3$ of A, i.e. the ternary relation

$$G(n, x, z) \Leftrightarrow A(n, x) = z$$

Show that G is primitive recursive.

2) Consider the following "stack algorithm" for computing the Ackermann function A(n,x):

Input: A pair
$$(n, x) \in \mathbb{N}^2$$
.

Algorithm: Given a sequence $s = (n_1, \dots, n_k)$ of natural numbers, do the following:

-If k = 1, i.e., $s = (n_1)$, Stop: n_1 is the output.

-If $k \geq 2$, write $s = t^{\hat{}}(n', x')$ (where here $\hat{}$ denotes concatenation), with t a finite sequence of numbers, perhaps empty. Then do the following:

- If n' = 0, replace s by $s' = t^{\hat{}}(x' + 1)$.
- If n' > 0, x' = 0, replace s by $s' = t^{\hat{}}(n' 1, 1)$.
- If n' > 0, x' > 0, replace s by $s' = t^{\hat{}}(n'-1, n', x'-1)$.

Show that for each input (n, x) this algorithm terminates after finitely many steps (i.e., we reach a sequence of length 1) and the output is the value A(n, x).

3) Show that the following partial function $f: \mathbb{N} \to \mathbb{N}$ is recursive: f(n) = 1, if there is a sequence of n consecutive 7's in the decimal expansion of the square root of 2; f(n) is undefined otherwise.