Ma/CS 117a HW #5 Due Tuesday, November 12th, at 1pm

- 1) Find explicitly a Markov algorithm \mathcal{A} on an alphabet B containing the symbol 1 and the comma symbol, which computes the function f(m,n) = m-n, if n < m; = 0, if n > m. That is, if the input to \mathcal{A} is $\underbrace{11\ldots 1}_{m}$, $\underbrace{11\ldots 1}_{n}$, the output is $\underbrace{11\ldots 1}_{f(m,n)}$.
- 2) Show that there is a partial recursive function $f: \mathbb{N} \to \mathbb{N}$ for which there is no *total* recursive extension $g \supseteq f$, i.e., there is no total recursive $g: \mathbb{N} \to \mathbb{N}$ such that for any n in the domain of f we have f(n) = g(n).

Hint. Use diagonalization on a universal recursive function.

- 3) Show that $R \subseteq \mathbb{N}$ is r.e. iff R is finite or there is a 1-1 total recursive function $f : \mathbb{N} \to \mathbb{N}$ with range(f) = R. (The difference here from the definition is the hypothesis that f is 1-1.)
- 4) Show that $R \subseteq \mathbb{N}$ is recursive iff R is finite or there is a strictly increasing recursive total function $f: \mathbb{N} \to \mathbb{N}$ with range(f) = R.