Ma/CS 6c

Assignment #1

Due Tuesday, April 8 at 1:00 pm.

(40%) **1.** (a) Prove the correctness of the following algorithm for recognizing when a given string S is a P-wff:

If $S = s_1 s_2 \dots s_n$, compute $w(s_n), w(s_n) + w(s_{n-1}), \dots, w(s_n) + w(s_{n-1}) + \dots + w(s_1) = w(S)$. If all these sums are ≥ 1 and w(S) = 1, then S is a P-wff; otherwise, it is not. (Recall that w(p) = 1, $w(\neg) = 0$, w(*) = -1, if $* = \land, \lor, \Rightarrow, \Leftrightarrow$.)

Apply this algorithm to the strings:

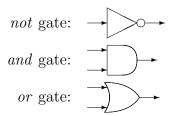
- (i) $qp \Rightarrow \neg ttr \Rightarrow \wedge \neg stuv$;
- (ii) $\Rightarrow \Leftrightarrow \neg \land pq \lor \neg p \neg qs$.

If any of these strings is a P-wff, write down the corresponding wff.

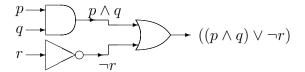
- (b) Formulate an analogous algorithm for recognizing RP-wff.
- (40%) **2.** Show that unique readability holds for the formal language described below (whose grammatically correct strings we call R wff):
 - (i) Symbols: $p_0, p_1, \ldots,), \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow;$
 - (ii) Rules: (a) Each p_i is a R-wff;
 - (b) If A is a R-wff, so is $\neg A$).
 - (c) If A, B are R-wff, so are $A \wedge B$, $A \vee B$, $A \Rightarrow B$, $A \Leftrightarrow B$.
- (10%) 3. Define the following function

$$r: \text{wff} \to \{0, 1, 2, \dots\}$$

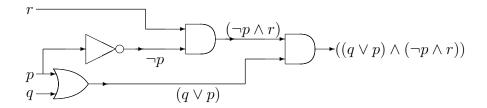
by recursion:


$$r(p) = 0$$

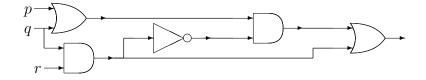
$$r(\neg A) = r(A) + 1$$


$$r((A * B)) = \max\{r(A), r(B)\} + 1.$$

Compute r(A) for a couple of examples of your choice. What does r(A) mean in terms of the parse tree T_A of the wff A?


(10%) 4. Consider the following kinds of gates:

Every wff using only \land , \lor , \neg corresponds to a circuit built out of these gates. For example, the wff $((p \land q) \lor \neg r)$ corresponds to the circuit:


and $((q\vee p)\wedge (\neg p\wedge r))$ corresponds to the circuit:

(a) Construct a circuit corresponding to the wff:

$$((p \wedge q) \vee (p \wedge (\neg q \vee r))).$$

(b) Find a wff corresponding to the circuit:

