
New arithmetic laws for order types

Garrett Ervin, joint with Eric Paul

January 6th, 2026



Outline

Goal: Study the arithmetic of the class of linear orders (LO,+)
under the ordered sum.

▶ (E. + Paul, 2025+) We systematize and extend results about
(LO,+) due to Lindenbaum, Tarski, and Aronszajn.

▶ Our approach is based on a theory of group actions on linear
orders developed by Hölder, Conrad, Holland, and McCleary.

▶ I will focus on a new result in which we use this approach to
prove a “corrected” version of a conjecture of Tarski about
additively commuting pairs of linear orders.



+ as concatenation of natural numbers

If we view each n ∈ N as an ordered set of n points,

( · · · )

n

Then the sum + on N can be viewed as a concatenation operation:

( ) + ( ) = ( | )

5 2 7



+ as concatenation of linear orders

We can generalize the notion of sum-as-concatenation to the class
of all linear orders.

Def: Given two linear orders A and B,

( )

A

( )

B

Their sum A+ B is the linear order obtained by placing a copy of
B to the right of A.

( )

A B

A+ B



· · ·( · · · )
Z

+ ( )

R
=

· · ·( · · · | )

Z+ R



Arithmetic in (LO,+) vs. (N,+)

Let LO denote the class of linear orders.

Questions:

▶ Which arithmetic laws in (N,+) still hold in (LO,+)?

▶ For those laws that fail, can we characterize their failure?



+ is associative in LO

We retain associativity: for all A,B,C ∈ LO,

( )

A

( )

B

( )

C

We have (A+ B) + C ∼= A+ (B + C ).

( )

A B C

A+ B + C

Do other laws hold in (LO,+)? Commutativity? Cancellation?
Euclidean division?



Absorption

Infinite linear orders can exhibit “infinitary” additive properties
that natural numbers cannot possess.

Especially important are absorption properties.

Def: Suppose A and X are linear orders. Then X absorbs A . . .

▶ . . . on the left if A+ X ∼= X ,

▶ . . . on the right if X + A ∼= X .



Left absorption

N absorbs 1 on the left:

+

1

· · ·
N

∼= | · · ·
N

. . . but not on the right:

· · · + = · · · |

N 1 N+ 1



Left absorption

If we view N as the infinite N-sum 1 + 1 + 1 + · · · , then the left
absorption of 1 follows by “generalized associativity,”

1 + N = 1 + (1 + 1 + · · · )
∼= 1 + 1 + 1 + · · ·
= N.



Left absorption

For a linear order A, let NA denote the N-sum A+ A+ · · ·

Then if R is any linear order, NA+ R absorbs A on the left:

A+ (NA+ R) = A+ (A+ A+ · · ·+ R)
∼= A+ A+ A+ · · ·+ R
∼= NA+ R.

This form turns out to be general:

Fact: A+ X ∼= X if and only if X ∼= NA+ R for some R.

Pf : Not hard.



Right absorption

Symmetrically, we have:

Fact: X + A ∼= X if and only if X ∼= L+ N∗A for some L.

Here, N∗ = · · ·+ 1 + 1 + 1 denotes the reverse of N:

· · ·
N∗

and N∗A denotes the N∗-sum · · ·+ A+ A+ A.



Bi-absorption

For any linear order C , the order NA+C +N∗A absorbs A on both
the left and right:

A+ (NA+ C + N∗A) ∼= NA+ C + N∗A
∼= (NA+ C + N∗A) + A

And conversely:

Fact: A+ X ∼= X + A ∼= X if and only if X ∼= NA+ C + N∗A for
some C .

| · · · · · · |



Cancellation in (N,+) and (LO,+)

In (N,+), the left and right cancellation laws hold:

a+ x = b + x ⇒ a = b
x + a = x + b ⇒ a = b

Absorption implies that cancellation fails in (LO,+), e.g.

1 + N ∼= 1 + 1 + N

but
1 ≁= 1 + 1.



Non-cancellation ⇔ absorption

However, absorption is the only barrier to cancellation in (LO,+)!

Fact: If A+ X ∼= B + X then there exists K such that either

i. A ∼= B + K and K + X ∼= X , or

ii. B ∼= A+ K and K + X ∼= X .

(“A is isomorphic to B up to an X -infinitesimal final segment.”)

Pf :

A X

B X

( )

( )

|

|

|
K



Commutativity in (N,+) and (LO,+)

(N,+) satisfies the commutativity law:

a+ b = b + a.

On the other hand, commutativity fails badly in (LO,+), e.g.

1 + N ≁= N+ 1
R+ Z ≁= Z+ R



Commutativity in (LO,+)

Commutativity doesn’t always fail in (LO,+).

X + Y ∼= Y + X if . . .

▶ . . . X = n and Y = m are natural numbers;

▶ . . . More generally, there is a linear order C such that X = nC
and Y = mC ;

▶ . . . One of X ,Y bi-absorbs the other.

(Here, nC denotes the n-fold sum C + C + · · ·+ C .)



Euclidean division in (LO,+)

Despite the fact that additive cancellation and commutativity fail
in (LO,+), finite division can be carried out in (LO,+) in the
strongest possible sense.

Cancellation theorem: (Lindenbaum) Suppose A and B are linear
orders, and nA ∼= nB for some natural number n. Then A ∼= B.

| |

| |

A A A

B B B

( )

( )



Euclidean division in (LO,+)

Division theorem: (Lindenbaum) Suppose A and B are linear
orders, and nA ∼= mB for some natural numbers n and m with
gcd(n,m) = 1. Then there is a linear order C such that A ∼= mC
and B ∼= nC .

|
| ||

A A

B B B

C C

( )

( )

Pf : Not easy!



Some history

Many of the fundamental results about (LO,+), including the
absorption results above and culminating in the division theorem,
were proved by Lindenbaum.

A. Lindenbaum



Some history

Lindenbaum’s results are stated without proofs in a book with
Tarski (1926).

————————————————————



Some history

Proofs of Lindenbaum’s results would not appear until 30 years
later, after Lindenbaum’s death, in Tarski’s book Ordinal Algebras
(1956).
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Ordinal algebras

An ordinal algebra
(A,+,Σ,∗ , 0)

is a type of abstract structure generalizing (LO,+) in which one
can do “concatenation arithmetic.”

It consists of

– a universe A (whose elements a ∈ A can be thought of as
“segments”),

– a binary concatenation operation +,

– an N-ary concatenation operation Σ,

– a unary reversal operation ∗,

– an identity element 0.



Ordinal algebras

The axioms for ordinal algebras were isolated by Tarski as the
principles needed to prove Lindenbaum’s results about (LO,+).

8 CHAPTER 1 

DEFINITION 1.1.  An ORDINAL ALGEBRA is  a system ( A ,  2, +, *, 0) 
formed by a set A of arbitrary elements, an operation 2 on finite 
and simple infinite sequences of elements of A ,  an operation + on 
couples of elements of A ,  an  operation * on single elements of A ,  and 
a distinguished element 0 of A .  A is  assumed to be closed under 
the operations 2, + , *, and the following postulates are assumed to 
hold for arbitrary elements a ,  b, c ,  a,, b,, c,, ... of A : 

(I) [POSTULATE OF ELEMENTARY SUMS]. zx,,a,= 0 and &lax= a,. 
(11) [ASSOCIATIVE POSTULATE]. If pu tw and YQw ,  then 

(111) [DIRECTED REFINEMENT POSTULATE]. If x < o a x =  b + C  and 
c f  0, then theye are two elements d ,  e and an ordinal pu<w such that z<p a,+d = b, up= d + e ,  and e + Xx,, ap+ l+x=  c. 

(IV) [REMAINDER POSTULATE]. If a,= b,+a,+l for every x < o ,  
then there is an element c such that ax= zA<, b,,, + c for every x < w .  

(v) [INVOLUTION POSTULATE]. 

(VI) [DUAL ISOMORPHISM POSTULATE]. 

a* * =a. 
(a  + b)* = b* +a*. 3, 

In connection with this definition it should be pointed out 
that the symbols 0, + ,  Q are used in the monograph in two or 

It is interesting to compare the ordinal algebras discussed in this 
paper with the cardinal algebras studied in [17]. There is much analogy 
between the two kinds of algebras-both in the defining postulates and in 
deeper arithmetical consequences of these postulates. The main difference 
consists in the fact that in ordinal algebras, as opposed to cardinal algebras, 
the operation + is not commutative. It may seem intriguing that, although 
the commutative law is invariably used in arguments from the arithmetic 
of cardinal algebras, numerous conclusions of these arguments can be 
established (by means of different methods) for ordinal algebras as well. 
The situation clears up to some extent when one notices that the refinement 
postulate, which is one of the fundamental postulates for cardinal algebras 
(cf. [17], pp. 3ff.), is replaced in the definition of ordinal algebras by a 
much stronger statement -the directed refinement postulate. Also, the 
presence of a dual isomorphism in ordinal algebras partly makes up for the 
lack of the commutative law. 

3) 

Tarski showed that Lindenbaum’s results for (LO,+), including the
division theorem, hold in an arbitrary ordinal algebra (A,+,Σ,∗ , 0).



Ordinal algebras

Results about (LO,+) that follow from Tarski’s ordinal algebra
axioms can be thought of as “purely arithmetic.”

That is, they can be proved only with reference to linear orders
(the “segments” of LO) and the operations +,Σ,∗.

Such proofs don’t refer to underlying “points” in these segments.



Tarski’s proof of the division theorem

Although Lindenbaum’s division theorem is a direct generalization
of Euclidean division in (N,+), Tarski’s proof is involved, and not
transparently related to the arithmetic of (N,+).

36 CHAPTER 1 

and consequently, by 1.46, 

(3) c+b=a .  
From ( 1 )  and ( 3 )  we obtain 

a+ b = (b+  C) + b = b + (C + b )  = b +a ,  
and the proof is complete. 

THEOREM 1.50 [EUCLID’S THEOREM]. If a.,U=b*Y Where ,U and 
v are two relatively prime finite ordinals, then, for some c ,  a = c . v  
and b = c a p .  

PROOF: I. We start with the special case p = 2 ,  v=3. Thus 
we have 
(1) a . 2 = b . 3 ,  i.e., a+ a= b + ( b + b ) .  

Hence, by 1.34, there is an element d such that either 
(2) a+ d= b  and a= d+ b+ b  
or else 
(3) a=b+d and d+ a= b+ b .  

In case ( 2 )  we have 
a=(d+b)+a+d. 

a=a+d ,  
Therefore, by 1.27, 

i.e., by (2), 

(4) a=b .  

Hence, by ( l ) ,  

and consequently, by 1.47, and (4), 

a . 2 = a a 3  

a = a - 3  and b=a.2. 

Thus the conclusion is satisfied by c=a .  

In  case ( 3 )  we apply 1.34 to the formula d + a = b + b .  We obtain 
an element e such that either 
( 5 )  d=b+ e  and e+a=b  

· · ·
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or else 

(6) d+e=b  and a=e+b .  

Assume that (5) holds. We have by (3) and (5) 

a=b+d= e +a+d .  

Hence, by 1.27 and (5 ) ,  

a=e+a=b .  

Thus we have again arrived at  (4) and, by arguing as before, we 
obtain the conclusion. 

Assume now that (6) holds. From (l), (3), and (6) it follows that 

(e  +d ) .3=e+d  +e + d  +e+d  =e  + b+  b + d  =a  +a  = b .  3. 

Hence, by 1.46 and (6), 

(7) b=d +e=e+d .  

By applying 1.34 again, we conclude that there is an element f 
for which either 

(8) d = e + f = f + e  

or 

(9) e =d+ f= f+d .  

Our further argument in both cases (8) and (9) is entirely analogous. 
We restrict ourselves to the discussion of (8). By (6)-(8) we have 

a = e + b = e f e+ d = e + e + e + f = e .  3 + f ,  

while (3), (7), and (8) give 

a= b + d = e -t d + d = e + e + f + e + f = e . 3  + f a  2. 

Thus 
a=  e .  3 +f= e . 3  + f . 2 ,  

and hence, with the help of 1.13(ii), 

(10) a = a + f = e . 3  + f .  3 = (e + f) 3 = d .3. 

· · ·

And so on.



A new proof

Question: Is there a more transparent proof of Lindenbaum’s
division theorem?

Answer: (E. + Paul, 2025+) Yes! By adapting and extending a
structural decomposition theory for groups G acting by order
automorphisms on a linear order X developed by Holland,
McCleary, and others.



Characterizing commutativity in (LO,+)

In working on (LO,+) and ordinal algebras, Tarski became
interested in characterizing the additively commuting pairs of linear
orders.

Conjecture: (Tarski; 1930s, unpublished) Suppose A and B are
linear orders. Then A+ B ∼= B + A if and only if one of the
following holds:

i. A ∼= nC and B ∼= mC for some C ∈ LO and n,m ∈ N,
ii. One of A,B bi-absorbs the other.

Tarski proved this result holds over the class of scattered linear
orders (and gave an ordinal algebra proof).



Tarski’s conjecture is false

Lindenbaum (1930s, unpublished) found a counterexample to
Tarski’s conjecture.

Later, Aronszajn (1950s) proved a structural characterization of
the commuting pairs A+ B ∼= B + A. In so doing, he showed that
Lindenbaum’s counterexample is essentially the only possible one.



The remainder

We present Lindenbaum’s counterexample, state Aronszajn’s
commuting pairs theorem, and then state a modified version of
Tarski’s original conjecture that we recently proved.

The proof uses the same techniques that yielded new proofs of
Lindenbaum’s cancellation and division theorems.



Lindenbaum’s counterexample

Fix α, β > 0 such that β
α is irrational (e.g. α = 1, β =

√
2).

Consider the translations of R by α and β:

f (x) = x + α
g(x) = x + β

( )
x f (x)

( )
x g(x)



Lindenbaum’s counterexample

Since f and g are translations, they commute as maps:

f (g(x)) = g(f (x)) = x + α+ β.

( )
x x + α x + α + β

( )
x x + β x + β + α



Lindenbaum’s counterexample

Let G = ⟨f , g⟩ be the (abelian) group of translations generated by
f and g .

For x ∈ R, let [x ] denote the G -orbit of x , i.e.

y ∈ [x ] ⇔ there is h ∈ G s.t. y = h(x)
⇔ there are m, n ∈ Z s.t. y = x +mα+ nβ.

Since β
α is irrational, each orbit [x ] is dense in R.

( )

x
↓

x + mα + nβ
↓

[x ]



Lindenbaum’s counterexample

For each orbit [x ], we choose an associated linear order L[x].

Let R(L[x]) denote the linear order obtained by replacing each
point x ∈ R with L[x].

( )

x
↓

y
↑

replace with L[x]
replace with L[y ]



Lindenbaum’s counterexample

Points in R(L[x]) have coordinates (x , i) where x ∈ R and i ∈ L[x].

Key observation: For any translation h ∈ G , h lifts to an
order-automorphism of R(L[x]) defined by

(x , i) 7→ (h(x), i).

This map is well-defined because L[x] = L[h(x)].



Lindenbaum’s counterexample

Let A denote the restriction of the replacement R(L[x]) to the
interval [0, α).

Let B denote the restriction to [0, β).

( )
0 α

A

( )
0 βB



Lindenbaum’s counterexample

Observe:

B ∼= f [B]
= restriction of R(L[x]) to [α, α+ β)

and
A ∼= g [A]

= restriction of R(L[x]) to [β, β + α).

( )
0 α α + βA f [B]

( )
0 β β + αB g [A]



Lindenbaum’s counterexample

Now let X denote the restriction of the replacement R(L[x]) to the
interval [0, α+ β).

Then:
X ∼= A+ f [B]

∼= A+ B

and
X ∼= B + g [A]

∼= B + A

Hence A+ B ∼= B + A!

It can be shown: for most choices of the orders L[x], A and B are
not of either of the commuting forms in Tarski’s conjecture.



Aronszajn’s commuting pairs theorem

The form of the counterexample turns out to be general!

Theorem (Aronszajn): Suppose A and B are linear orders such
that A+ B ∼= B + A. Then one of the following conditions holds:

i. One of A,B bi-absorbs the other,

ii. There exists α, β > 0 and a replacement R(L[x]) relative to
the orbit equivalence relation of the group of translations

G = ⟨x 7→ x + α, x 7→ x + β⟩

such that A is isomorphic of the restriction of the replacement
to [0, α) and B to the restriction to [0, β).

(The case when A ∼= mC and B ∼= nC from Tarski’s original
conjecture corresponds to when β

α ∈ Q.)



An arithmetic characterization of A+ B ∼= B + A?

Aronszajn’s theorem is a structural characterization of the pairs
A+ B ∼= B + A, not an arithmetic characterization.

There is no way to state Aronszajn’s theorem in the language of
ordinal algebras, much less ask whether it can be proved from the
axioms for ordinal algebras.

This is in contrast to Tarski’s conjecture, which can at least be
stated in the language of ordinal algebras.



An arithmetic characterization of A+ B ∼= B + A?

Tarski noted this in his book!

80 CHAPTER 2 

The most important result of Chapter 1 concerning recursive 
elements is Theorem 1.65 which contains a characterization of 
commutative couples (a ,  6 )  (i.e., couples with a + 6 = 6 f a ) ,  and 
provides a general method of constructing all such couples, under 
the assumption that at  least one of the elements a and 6 is recursive, 
By 2.11 and 2.13 this result applies to commutative couples (a ,  /?) 
of reflexive relation types in which at  least one of the types a and /? 
is a scattered order type or, more generally, is an ordinal sum of 
indecomposable types over a scattered simply ordering relation. 
The author showed by another method that the same result holds 
for couples (a ,  /?) of order types in which a or /? is a t  most 
denumerable. On the other hand, Lindenbaum constructed two 
non-denumerable and non-scattered order types a and ,!? which 
are commutative, but do not satisfy any of the conditions (i)-(iii) 
(with a ,  6 ,  c replaced by a, ,8, y )  of 1.65. 12) 

Like the set RC, its subset RC' which was briefly discussed in 
the remarks following 1.65 also admits a simple characterization 
in terms of familiar relation-theoretical notions. I n  the ordinal 
algebra 0% of all order types (cf. 2.11), RG' proves to coincide 
with the set of all ordinals, i.e., types of well ordering relations; 
in the algebra %% of all reflexive types (cf. 2.9) it coincides with 
the set of all types a which can be represented in the form 

where p is an arbitrary ordinal and all the 8,'s are indecomposable 
reflexive types. 

la )  The results of the author concerning the coincidence of scattered 
order types with recursive types in the seme of 1.55 and the commutativity 
of two order types (in case one of them is scattered or denumerable) were 
obtained around 1930 but were not published; the counter-example of 
Lindenbaum was constructed in the same period. A general Characterization 
of, and construction method for, arbitrary commutative couples of order 
types has recently been given by Aronszajn in [l]. From the main theorem 
in [ 11 the results concerning scattered and denumerable order types as well 
as Lindenbaum's counter-example can easily be derived. Aronszajn's 
results, however, cannot be formulated within the arithmetic of ordinal 
algebras. 



An arithmetic characterization of A+ B ∼= B + A?

Jonssón, in a paper from the 80s, gives similar commentary:

34 B.JONSSON 

THEOREM 12.3. (Tarski [1956]) For any isomorphism types of 

struatures a, b, a, and for any positive integers m and n, the 

foLLowing statements hoLd: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii)' 

(viii) 

(ix) 
(x) 

(xi) 
(xii) 
(xiii) 

If woa = b te a and a of 0, then for some x, y, and some 

k E w, b = (koa) $ x, a = y te (woa) , and x te Y - a. 

a (tl b = b iiI woa s b. 

a S a* iff a = a*. 

If b S woa, b s* woa, and b of 0, then b = woa. 

If a S b $ a, then either a S b or a = b $ x, for some 

x S a. 

The foLLowing aonditions are equivaLent: 

(ViI) a te b (tl a = b. 

(vi2) woa S band wO*CJ s* b. 

(vig) b = (woa) $ x e (wo*a) for some x. 

If a (tl b $ a = a and wo (attb) = wo(b$a) , then a $ a 

b (tl a = a. 

If (noa) $ b = b, then a te b = b. 

If woa S then woa S h. 

If a $ = b $ then a te a = b te a. 

woa S b iff koa S b for aU k E w. 
wo (noa) = woa. 

If (E?pa) (tl b = b (tl (noa) , then a te b = b $ a. 

All the properties listed above hold in every ordinal 
algebra, as is shown in Tarski [1956]. As is also shown there, 
certain other properties which can be formulated for arbitrary 
ordinal algebras are not valid in general, although they hold for 
isomorphism types. Among these is the general associative law; 

(j) (j) an +p 
kEw P<qk k 

where a = nO < nl < n2 < ••• and qk 

special case 

(j) a 

pEw p 

= nk+l-nk' and even the 

wo(Qffib) = a te (wo(btea» 

There are still other properties that cannot be formulated 
in the language of ordinal algebras, e.g. properties that involve 
cardinalities of the structures, or involve addition with 
infinite index sets other than w. A particularly interesting 
example of this arises in connection with the problem of charac-
terizing those pairs of isomorphism types that commute with each 
other. The history of this problem is related in Tarski [1956], 
p. 80. Obviously a $ b = b te a holds if a and b are multiples 
of the same type, 

a = !!loa and b = noa ARITHMETIC OF ORDERED SETS 

and also if one of them absorbs the other, both on the left and 
on the right, i.e., if either 

or 

Tarski proved that if either a or b is countable, and if 

35 

a w b = b w a, then one of these three conditions must be satisfied. 
On the other hand, Lindenbaum constructed uncountable totally 
ordered sets for which this is not the case. Neither result has 
been published, but in Aronszajn [1952] the commuting pairs were 
completely characterized, and the earlier results derived as 
corollaries. This characterization is rather involved, and will 
not be described here. It does involve summations over non-
denumerable sets of real numbers. 

13. LEXICOGRAPHIC PRODUCTS 

Lexicographic products of reflexive structures were investi-
gated in Chang [1955], [1961] and [1961a], and in Chang, Morel 
[1960]. Somewhat later, several graph-theorists became interested 
in this subject and, unaware of the earlier work, rediscovered 
many of the basic results. 

The paper Chang, Morel [1960] contains two fundamental 
results. 

THEOREM 13. 1. For any non-empty, re fle:d ve s tructUl'es A, B, C 
and D, if AoB c>< CoD and IBI = IDI < then A c>< C. 

THEOREM 13.2. For any non-empty, re fle:d ve structures A, B, C 
and D, if AoB c>< CoD and A and C are finite, then one of the 
structures Band D is isomorphic to a substructure of the other. 

The proof of the first theorem is not hard. Let c>< CoD 
be the given isomorphism, and let n = IBI = IDI. For a E A define 
aB = {(a,x):x E B}, and for c E C define cD similarly. The set 
CxD is partitioned in two ways into n-e1ement subsets, on the 
one hand the sets cD, on the other hand the sets By 
deBruijn [1943], the two partitions have a common transvera1 T. 
It follows that there exists a bijection 1jJ from A to C such that 
1jJ(a) = c iff and cD have the same representative in T. 
The proof is then completed by showing that 1jJ:A c>< C. 

The proof of the second theorem is more difficult, and we 
shall not attempt to describe it. 

These two results have a number of interesting corollaries. 



An arithmetic characterization of A+ B ∼= B + A?

Questions:

1. Is there an arithmetic characterization of A+ B ∼= B + A?

2. If so, is there an arithmetic proof (i.e., can it be proved from
the axioms of ordinal algebras)?

Answers:

1. Yes (E. + Paul, 2025+).

2. We don’t know!



An arithmetic characterization of A+ B ∼= B + A

Theorem (E. + Paul): Suppose A and B are linear orders. Then
A+B ∼= B +A if and only if one of the following conditions holds.

i. One of A,B bi-absorbs the other,

ii. NA ∼= NB and N∗A ∼= N∗B.

This theorem can be viewed as a “corrected” version of Tarski’s
original conjecture: Tarski’s condition A ∼= nC and B ∼= mC is a
strict strengthening of (ii.).



Approach to the proof

▶ Aronszajn’s proof gives the forward direction of our theorem:
if A+ B ∼= B + A, then A,B satisfy one of our generalized
Tarski conditions.

▶ The backward direction in the bi-absorption case is trivial.

▶ Remains to show: if NA ∼= NB and N∗A ∼= N∗B, then
A+ B ∼= B + A.

▶ For this we need our technology.



Proof sketch

▶ Suppose NA ∼= NB

)
A A A

)
B B B

. . . and N∗A ∼= N∗B.

(
AAA

(
BBB



Proof sketch

▶ Then ZA ∼= ZB with the A’s and B’s “aligned at the origin.”

( )

▶ Let X = ZA ∼= ZB.
Aut(X , <) has at least two elements:
f = “+A” map
g = “+B” map



Proof sketch

▶ Consider the action Aut(X ) ↷ X .

▶ Key step: We can mod out this action by automorphisms
with “infinitesimal support” to get an action

Aut(X )/N ↷ X/∼

▶ Then get a dichotomy:
i. either the action is extremely rigid: in fact Aut(X )/N is

isomorphic to a subgroup of (R,+);
ii. or the action is extremely non-rigid (“doubly transitively

derived”).



Proof sketch

▶ in case (i.) (“dynamics easy, arithmetic non-trivial”):

f̂ and ĝ commute in Aut(X )/N, hence A and B commute
additively “up to an infinitesimal segment” which can be
eliminated.

▶ in case (ii.) (“dynamics hard, arithmetic trivial”):

can prove nA ∼= mB for any n,m ∈ N.



Thank you!


