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My research focuses on the study of infinite structures, especially orders, groups, and graphs.
Much of my work has centered on structural arithmetic, that is, the arithmetic of sums and
products of infinite structures, with a focus on the structural arithmetic of linear orders. I
have also worked on isoperimetry problems involving flows in infinite graphs, and on infinitary
generalizations of the theory of submodular functions.

Structural arithmetic can be viewed as the study of equations (or more precisely, isomorphisms)
over a class of structures € equipped with a sum + or product x. What sets apart the arithmetic
of such a class € from the familiar arithmetic of the natural numbers N often boils down to a
handful of simple equations that have nontrivial solutions in € but only trivial solutions in N.
Such equations frequently prescribe some form of arithmetic self-similarity for the structures that
satisfy them. These include absorption equations such as A+ X = X and A x X ¥ X, and
splitting equations such as X + X = X and X2 = X. The basic techniques used to study the
structures in a given class € that solve such equations resemble the basic techniques used to study
self-similar sets and iterated function systems, with the structures playing the role of attractors.

In my thesis, I used such techniques to solve the cube problem for linear orders, posed by
Sierpinski in 1958. The problem is to determine whether there exists a linear order X that
is isomorphic to its lexicographically ordered cartesian cube X2 but is not isomorphic to its
square X 2. The corresponding question has been answered positively for many different kinds of
structures, including groups, rings, graphs, Boolean algebras, and topological spaces of various
kinds. However, the answer to Sierpinski’s question turns out to be negative: I showed that every
linear order isomorphic to its cube is already isomorphic to its square. Subsequently, I solved
a related problem of Sierpiriski’s by constructing a pair of non-isomorphic linear orders that are
both left-hand and right-hand divisors of one another.

More recently, in joint work with my research student Ethan Gu, we completely characterized
the multiplicatively left-absorbing countable linear orders, that is, the countable linear orders X
satisfying an isomorphism of the form A x X = X.

In ongoing joint work with my student Eric Paul, we present a new, systematic development
of the additive arithmetic of linear orders based on the theory of ordered groups. Among our
particular results are new proofs of a theorem of Tarski and Aronszajn characterizing the addi-
tively commuting pairs of linear orders, and a theorem of Lindenbaum characterizing divisibility
in finite sums of linear orders.

Also with Eric Paul, we give a detailed analysis of the two-by-two multiplicative isomorphism
Ax X =2 BxY for linear orders. Using this analysis, we extend a theorem of Morel characterizing
the multiplicatively right cancelling linear orders (that is, the orders X satisfying Ax X = Bx X =
A 2 B) and determine the precise extent to which this characterization holds on the left.

My work on infinite graphs was originally motivated by questions about Cayley graphs of
infinite, finitely generated groups. I am interested in the dividing line between amenable and
non-amenable finitely generated groups, and in particular how the amenability of such a group
influences the structure of its Cayley graph. For example, it is a result of Gromov that non-
amenability can be characterized in terms of an isoperimetric condition on the Cayley graph of a
group, which in turn can be used to decompose the Cayley graph into uniformly splitting trees.
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One can ask more generally when isoperimetric conditions on a locally finite graph yield the
existence of certain uniform subgraphs of the graph, or even a decomposition into such subgraphs.
In this direction, I proved that every locally finite graph G contains a pruned tree T that, in a
precise sense, splits as early and as often as possible. The proof introduces a matroid on the
vertices of G whose independent sets are those collections of vertices that can serve as sources for
pairwise disjoint infinite one-sided paths. I also proved that every locally finite graph G with at
most countably many ends is bi-lipschitz equivalent to a graph G’ that can be partitioned into a
collection of infinite paths realizing each of its ends exactly once.

These infinite path theorems rely on a version of the max-flow min-cut theorem from finite
graph theory. In attempting to better understand the max-flow min-cut theorem, I found a
generalization of the notion of a graph in which edges are replaced by filters on an underlying
infinite vertex set, and flows of point masses along edges are replaced by flows of ultrafilters along
these “filter edges.” I proved the analogue of the max-flow min-cut theorem for these generalized
graphs. In the course of this work, I completely characterized the 2-valued submodular functions,
including those defined on infinite domains, in terms of filter edges.

1. CUBE PROBLEMS

Suppose that (€, x) is a class of structures with an associative product, such as the class of
groups with the direct product, or the class of topological spaces with the topological product.
It is often possible to find examples of infinite structures X € € that are isomorphic to their own
squares. If X = X2 then X = X3 as well. The question of whether the converse holds for a
given class €, that is, whether X3 =2 X =— X2 >~ X for all X € ¢, is called the cube problem
for €. If it has a positive answer, then € is said to have the cube property.

For “large” or “general” classes of structures, the cube property typically fails. There exist
groups, rings, modules, topological spaces, Boolean algebras, graphs, and partial orders that are
isomorphic to their cubes but not their squares, to name a few examples. See [1] [3] [10] [13] [14]
[17] [18] [25] [26] [27] [28], or my paper [4] for a detailed list of these results and further historical
context.

In his 1958 book Cardinal and Ordinal Numbers, Sierpinski asked whether there exists a coun-
terexample to the cube property for the class (LO, x) of linear orders under the lexicographical
product. Despite the wealth of counterexamples that have been constructed for other classes,
Sierpinski’s question remained open until I showed that in fact the cube property holds for
(LO, x).

Theorem 1.1. (E. [4]) If X is a linear order such that X? = X, then X2 = X. More generally,
for any order X and n > 1 we have X" =2 X = X2~ X.

Also in Cardinal and Ordinal Numbers, Sierpiniski asked if there exist non-isomorphic orders X
and Y that are both left-handed and right-handed divisors of one another (that is, X & AY 2 Y B
and Y =2 CX = XD for some orders A, B,C, D). This problem is related to the cube problem: if
there were an order X isomorphic to its cube but not its square, then X and Y = X? would give
such orders. There is no such X, but the answer to Sierpinski’s question is still positive.

Theorem 1.2. (E. [5]) There exist non-isomorphic orders X, Y of size 2%0 that divide one another
on both the left and right.

2. FUNCTION SYSTEMS AND SELF-SIMILAR STRUCTURES

My solutions to Sierpiriski’s problems rely on a general theorem I proved about bijections
between Cartesian products of an infinite set X and itself. The theorem can be ported into many
contexts to characterize when a structure X is isomorphic to a product of itself, or power of itself.
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Theorem 2.1. (E. [9]) Given sets A and X, it is possible to characterize, without the axiom of
choice, exactly when there is a bijection F': A x X — X. Specifically, there is such a bijection if
and only if X can be partitioned into a family of subsets X = |J{I, : u € A}, indexed by points
in A, such that any two subsets I,,, I, that are indexed by tail-equivalent points u, v are of the
same cardinality.

Here, u,v € A% are tail-equivalent if there exist finite sequences r, s € A< and an infinite tail
u’ € A such that u = ru’ and v = su’. T use the notation X = A“(f,]) to mean that X can be
partitioned into such a family of subsets.

Given a class of structures (€, x) and a fixed structure A € €, it is often possible to adapt the
proof of the theorem to characterize those structures X € € such that A x X = X. One may
think of such structures X in this way: they may only be obtained by “replacing” each point u
in the direct product A“ by structures I, € € such that tail-equivalent points are replaced by
isomorphic structures. How to turn this into a concrete result depends on context. Here are some
examples.

Theorem 2.2. (E. [9])

a. Fix a group G, and suppose X is a group such that G x X = X. Then there is a subgroup
H < G¥ that is closed under tail-equivalence, and a normal subgroup N < X, such that
X/N is isomorphic to H.

b. Fix a topological space T. For any topological space X, we have T'x X = X if and only if
X = T%(If,), where the topology on T* can be the product topology, the box topology,
or any intermediate topology that is “closed under multiplication by T'.”

c. Fix a linear order L and let x denote the lexicographical product. Then for any order X,
we have L x X = X if and only if X = L“([,)) for some collection of linear orders Ip,).

My solution to the cube problem for linear orders crucially relies on part (c.) of Theorem 2.2.

An idterated function system (IFS) is a finite collection of contraction mappings {f1,..., fn}
on some complete metric space. A fundamental result, due to Hutchinson [12], is that any such
system has a unique attractor. That is, there is a unique compact set K such that K = f;(K).
Moreover, this attractor is naturally homeomorphic to a quotient of Cantor space (on n symbols),
and under this homeomorphism each f; becomes the shift map u +— iu.

Theorem 4 can be viewed as an analogue to Hutchinson’s result. If A and X are structures
such that A x X = X, then X can be decomposed into “A-many copies of itself.” Hence there
is a collection of mappings {f, : @ € A} such that for each a € A, the map f, sends X onto
the ath copy of itself within itself, and we have X = |J fo(X). Moreover there is a natural
isomorphism identifying X, not as a quotient of Cantor space, but as a replacement of A“. Under
this isomorphism the f, become shift maps on A“. Since there is no notion of metric, the f,
are not contractions. As a result, the iterated images of X under a sequence of these maps
need not converge to a point, as they do in the case of an IFS. However, they do converge to a
substructure (or, in certain instances, the “coset of a substructure”), and it is possible to show
that substructures associated to tail-equivalent sequences are isomorphic.

3. FURTHER RESULTS ON THE STRUCTURAL ARITHMETIC OF LINEAR ORDERS

3.1. Arithmetic of (LO,+). The sum X +Y of two linear orders X and Y is the order obtained
by placing a copy of Y to the right of X. A number of remarkable results about the arithmetic of
(LO,+) were proved in the first half of the twentieth century. Outstanding among these results
are two theorems of Lindenbaum that characterize finite division of linear orders, as well as a
theorem of Aronszajn and Tarski that characterizes the additively commuting pairs of linear
orders.

Given a natural number n and linear order X, let nX denote the n-fold sum X + X +---+ X.
Here are Lindenbaum’s theorems.
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Cancellation Theorem 3.1. (Lindenbaum) Suppose that n is a nonzero natural number and
X and Y are linear orders. If nX 2 nY, then X 2 Y.

Division Theorem 3.2. (Lindenbaum) Suppose that n and m are nonzero natural numbers
with ged (n,m) =1, and X and Y are linear orders. If nX = mY, then there is a linear order C
such that X 2 mC and Y = nC.

Taken together, Lindenbaum’s theorems can be viewed as saying that the Euclidean algorithm
holds for arbitrary linear orders! Proofs can be found in Tarski’s monograph [24].

A commuting pair of linear orders is a pair X and Y such that X +Y 2 Y + X. Aronszajn,
extending unpublished results of Tarski, characterized the commuting pairs of linear orders in [2].
We exclude the statement of Aronszajn’s result because it is somewhat technical.

Although the results of Lindenbaum and Aronszajn generalize well known facts about natural
numbers, the published proofs are somewhat difficult and ad hoc. In recent joint work with
Eric Paul, we develop a unified approach to the arithmetic of (LO,+) based on the theory of
ordered groups. Using our theory, we are able to get new proofs of Lindenbaum’s cancellation
and division theorems, and Aronszajn’s commuting types theorem. Our proofs give much more
structural information than the originals. Our results are forthcoming.

3.2. More on products of orders. A.C. Morel proved in [19] that a linear order X can be
cancelled on the right in lexicographic products if and only if X is not left-absorbing. That is, the
right cancellation law AX = BX = A = B holds for all linear orders A and B if and only if there
is no order L with at least two points such that LX = X. In recent work with Ethan Gu, we gave
a complete classification of the countable left-absorbing linear orders. For every such order X,
we moreover determined the complete list of corresponding absorbed orders L. More generally,
we characterized the countable orders that contain two disjoint convex copies of themselves. Our
results are contained in our paper [8].

In ongoing joint work with Eric Paul, we investigate the extent to which Morel’s theorem is true
on the left. We show that the cancellation law “X A = XB = A = B iff X is not right-absorbing”
is not true in general, but it is true when A and B are assumed to be non-left-absorbing. We
moreover show this theorem is optimal. Our paper is forthcoming.

4. INFINITARY SUBMODULAR FUNCTIONS AND MAXIMUM FLOWS

Many path and tree decomposition theorems for infinite, locally finite graphs rely of versions
of the max-flow min-cut theorem from finite graph theory. In attempting to better understand
the max-flow min-cut theorem and its proof, I found a generalized notion of graph and proved a
version of the max-flow min-cut theorem for these generalized graphs that, in a specific sense, is
as general as possible.

For a finite graph G = (V, E) and an edge e € E, let 1, denote the {0, 1}-valued set function
on 2V that indicates whether e is on the boundary of the input set. That is, for a set of vertices
X C V, we have 1.(X) = 1 if one end of e belongs to X and the other does not, otherwise
1(X)=0.

A key step in the proof of the max-flow min-cut theorem depends on the fact that these edge
indicators are submodular, that is, for any two sets of vertices X,Y C V we have

L(XNY)+ 1(XUY) < 1.(X) + 1(Y).

One might ask to what extent the submodularity of the edge boundary indicators is the essential
ingredient to the proof of the max-flow min-cut theorem. In general, submodular functions
can be complicated. But interestingly, 2-valued submodular functions on finite domains can
be completely characterized, and they resemble edge indicators of graphs!
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More specifically, if V' is a finite vertex set and A, B C V are two subsets of V', we write 14_,p
for the 2-valued set function on 2" defined by

lasp(X) = 0 ifANX=0or BCX,
Laog(X) = 1 fANX #0and BZ X.

That is, 14,p(X) = 1 iff X intersects A and V' \ X intersects B. It’s not hard to check that
1a-p(X) is submodular. If e = {a, b} is an edge in a graph G = (V, E) and we let A = B = ¢,
then 14,5(X) is the edge indicator 1.. If A = {a} and B = {b} for distinct vertices a,b € V,
then the function 14, 5(X) can be viewed as the outgoing indicator for directed edge from a to
b. In general, if we view a pair of subsets (A, B) of a vertex set V as a “directed hyperedge,”
14— 5(X) can be viewed as an indicator for whether this hyperedge lies on the outgoing boundary
of the input set.

It turns out these are essentially the only examples of 2-valued submodular functions on finite
domains.

Theorem 4.1. (E. [7]) Suppose that V is a finite set. A function f : 2" — {0,1} is submodular
if and (essentially) only if f = 14,5 for some A, B C V.

In the same way that we can identify a graph G with its edge set F, we can view a collection
of directed hyperedges {(A;, B;)} as a “directed hypergraph.” Using the submodularity of their
edge indicators, one can prove the analogue of the max-flow min-cut theorem for such graphs.

If we allow the underlying vertex set V' to be infinite, we can generalize the notion of an edge
further. Given two filters 7, G on V, we define a function 17_,g : 2V — {0,1} by

lrug(X) = 0 ifX°eForXeg,
lr,g(X) = 1 ifX°¢ Fand X €G.

We now get a characterization of 2-valued submodular functions, regardless of the cardinality
of the underlying vertex set.

Theorem 4.2. (E. [7]) Suppose that V is a set. A function f : 2" — {0, 1} is submodular if and
(essentially) only if f = 1x_,¢g for some filters F,G on V.

We can think of a pair of filters (F,G) on V as a generalization of a directed edge in a
hypergraph. By the theorem, this is the most general definition of edge possible, if by “edge”
we mean something with a 2-valued submodular indicator. For X C V| we think of the value
1r,6(X) as indicating whether this edge is on the outgoing boundary of X. Define a network
these edges G = {(F;,G;)} to be a filter graph on V. Using the submodularity of the edge
indicators of such graphs, one can formalize and prove the following result.

Theorem 4.3. (E. [7]) The max-flow min-cut theorem is true for locally finite filter graphs.
All discrete versions of the max-flow min-cut theorem that I am aware of can be viewed as
consequences of this theorem. See [7] for the formal statement and proof.
5. IDEAS AND DIRECTIONS FOR FURTHER RESEARCH
Here are several problems I am interested in working on that are related to the research

described above.

Arithmetic of linear orders

1) Do there exist linear orders X and Y such that X® 2 Y3 but X2 % Y?2? (Sierpiriski)
2) Does the implication aX +bY = c¢Y +dX = X +Y =Y + X hold for all natural numbers
a,b,c,d > 1 and linear orders X and Y7 (Tarski)



6 GARRETT ERVIN

Problem (1) is related to my work on the cube problem for linear orders (it was posed in the
same book in which Sierpiniski posed the cube problem), and Problem (2) on my more recent
work on the additive arithmetic of linear orders. Both of these problems are open. It seems likely
that the orderable group theory approach to the division theory and commutativity theory for
order types that I developed with E. Paul could be useful in resolving (2).

One-dimensional dynamics

3) Investigate equidecompositions and paradoxical decompositions of linear orders.
4) Classify the orientation-preserving automorphisms of R that preserve the tail-equivalence
relation.

While both of these problems are inspired by my work on the arithmetic and structure theory
of linear orders, they are connected with much broader areas of mathematics: Problem (3) to the
theory of non-amenable groups and Problem (4) to the dynamics and descriptive set theory of
the real line. They have the advantage of bringing the study of linear orders into these currently
highly active areas, which have classically focused on the study of other types of infinite structures,
especially groups and graphs.

Flows in infinite graphs and hypergraphs

5) Investigate generalizations of the max-flow/min-cut theorem for infinite graphs for flows
between a set of points in the graph and a set of ends of the graph.
6) Develop a decomposition theory for submodular functions on infinite domains.

These problems are related to my work on infinitary submodular functions and flows in gener-
alized graphs described in Section 4. Because flows and submodularity are extremely well-studied
in the finite setting, and are strongly connected to various kinds of finite optimization problems,
I view these problems as exciting infinitary generalizations of the finite optimization theory. And
I believe there’s a lot to do here even beyond these specific questions — this area (outside of my
work) is totally unexamined!
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