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Abstract. Morel proved that a linear order X can be cancelled on the right

in lexicographic products if and only if X is not left-absorbing. That is, the

right cancellation law AX ∼= BX ⇒ A ∼= B holds for all linear orders A and
B if and only if there is no linear order L with at least two points such that

LX ∼= X. We investigate the extent to which the corresponding theorem is

true on the left. Our main result is that if X is not right-absorbing, then the
left cancellation law XA ∼= XB ⇒ A ∼= B holds for all orders A and B that are

not left-absorbing. We show that this is the best possible left cancellation law
for the class of non-right-absorbing orders, and in particular, that the naive

left-sided version of Morel’s theorem is false.

1. Introduction

Given two linear orders X and Y , the lexicographic product of X and Y is the
linear order obtained by lexicographically ordering the cartesian productX×Y . We
denote the lexicographic product of X and Y by XY . In [3], Morel characterized
the linear orders that can be cancelled on the right in lexicographic products by
showing that, in a sense, a linear order fails to cancel on the right only if it fails
to cancel in the simplest possible way. We state Morel’s result precisely below.
Our focus in this paper is on the question of whether an analogous characterization
holds on the left.

A linear order X is right-cancelling if for every pair of orders A and B, we have
AX ∼= BX ⇒ A ∼= B. More generally, given a class of linear orders K, we say
that X right cancels over K if for every A ∈ K and every linear order B, we have
AX ∼= BX ⇒ A ∼= B. We define what it means for X to be left-cancelling, or to
left cancel over a class K, symmetrically. For a given order X and a given side,
there is a maximal class of orders over which X cancels on that side. We write
R(X) and L(X) for the maximal classes over which X cancels on the right and
left, respectively. An order is cancelling on a given side if the class over which it
cancels on that side is the class of all linear orders.

Orders can fail to be cancelling on one or both sides. For example, let Q denote
the linear order of the rational numbers, and let ω denote the linear order of natural
numbers. We view each natural number n ∈ ω as a linear order by identifying n
with the set of its predecessors {0, 1, . . . , n−1} arranged in their usual order. Cantor
proved that every countable dense linear order without endpoints is isomorphic to
Q. Since QQ is countable and dense and has no endpoints, we have that QQ ∼= Q,
which can also be written QQ ∼= 1Q, or QQ ∼= Q1. Since Q ̸∼= 1, it follows that Q
is neither right-cancelling nor left-cancelling. The same is true for any linear order
with at least two points that is isomorphic to its lexicographic square, for the same
reason.
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On the other hand, every nonzero n ∈ ω is cancelling on both the right and left.
That is, for any any linear orders X and Y , we have both that Xn ∼= Y n ⇒ X ∼= Y
and nX ∼= nY ⇒ X ∼= Y . These are two quite separate results, both due to
Lindenbaum [4]. Lindenbaum showed more generally that every ordinal α is right-
cancelling, and this was later further generalized by Morel [3], who showed that all
scattered linear orders are right-cancelling. In particular, ω is right-cancelling. But
ω not left-cancelling since ωn ∼= ω ∼= ω1 for every n ∈ ω, n ≥ 1.

All of the instances of non-cancellation above are actually instances of absorption.
A linear order X is left-absorbing if there exists a linear order L ̸∼= 1 such that
LX ∼= X. Since X ∼= 1X, left absorption witnesses that the absorbing order X
is non-cancelling on the right. Morel showed that, conversely, every non-right-
cancelling order is left-absorbing.

Theorem. (Morel [3, Theorem 3.10]) Let X be a linear order. If there are non-
isomorphic orders A and B such that AX ∼= BX, then there is an order L ̸∼= 1 such
that LX ∼= X.

Part of the utility of Morel’s theorem is that left-absorbing orders can often
be recognized easily. The countable left-absorbing linear orders are completely
classified in [2]. Although there is no general classification of the same kind for
uncountable left-absorbing orders, there is a concrete way of representing any left-
absorbing order X in terms of a fixed order A that it absorbs [1].

The question that motivated this paper is whether the left-sided version of
Morel’s theorem is true. A linear order X is right-absorbing if there is an or-
der L ̸∼= 1 such that XL ∼= X. Right-absorbing orders are non-cancelling on the
left. Is the converse true? That is, if X is a linear order such that for some pair
of non-isomorphic orders A and B we have XA ∼= XB, is X necessarily right-
absorbing? The answer turns out to be no, and we give several counterexamples
below. However, we will see that in all of these counterexamples the right-hand
factors A and B are left-absorbing. This turns out to be necessary: our main result
is that if one assumes that the right-hand factors A and B are not left-absorbing,
then the left-sided version of Morel’s theorem holds.

Theorem 1. Suppose that X, A, and B are linear orders. If X is not right-
absorbing and A and B are not left-absorbing, then XA ∼= XB implies A ∼= B.

We will show that this theorem is sharp, in the following sense.

Theorem 2. Suppose that A is a left-absorbing linear order. Then there exists
a linear order X which is not right-absorbing and a linear order B ̸∼= A such that
XA ∼= XB.

Another way of phrasing Theorem 2 is that the class of non-left-absorbing orders
is the largest class of linear orders over which every non-right-absorbing order can-
cels on the left. That is, an order Y is non-left-absorbing if and only if Y ∈ L(X)
for every non-right-absorbing order X.

The paper is organized as follows. In Section 2 we give define the necessary
terminology and prove some preliminary results. In Section 3, we prove Theorem
1. The proof is based on a general analysis of isomorphisms of the form XA ∼= Y B
in which that right-hand factors A and B are assumed to be non-left-absorbing.
In Section 4 we give the construction that proves Theorem 2. We close with some
open problems in Section 5.
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2. Preliminaries

2.1. Basic terminology. A linear order is a pair (X,<), where X is a set and <
is a strict total order on X. We will refer to linear orders by their underlying sets.
A suborder of X is a subset Y ⊆ X equipped with the inherited order. An interval
is a convex subset of a linear order, that is, a subset I of a linear order X such that
for all z ∈ X and all x, y ∈ I we have x < z < y implies z ∈ I. An interval I is an
initial segment of X if I is closed to the left, and I is a final segment of X if I is
closed to the right, or equivalently, if X \ I is an initial segment of X.

Given a linear order X and points x, y ∈ X with x ≤ y, we write [x, y] for the
interval {z ∈ X : x ≤ z ≤ y}. For arbitrary points x, y ∈ X, [{x, y}] denotes the
interval [x, y] in the case that x ≤ y and [y, x] when y < x.

Given two linear orders X and Y , an embedding is an order-preserving map
f : X → Y . Since all orderings are strict, embeddings are injective. An embedding
f is a convex embedding if the image f [X] is an interval in Y , and an isomorphism
if f [X] = Y . We write X ≲c Y if there is a convex embedding from X to Y , and
X ∼= Y if there is an isomorphism from X to Y .

We write X + Y for the sum of the linear orders X and Y . This is the order,
unique up to isomorphism, that can be decomposed into an initial segment isomor-
phic to X and corresponding final segment isomorphic to Y . We write XY for the
lexicographic product of X and Y . This is the order whose underlying set is the
cartesian product X × Y , and whose ordering is given by the rule (x, y) < (x′, y′)
if x < x′ (in X), or x = x′ and y < y′ (in Y ). Visually, XY is the linear order
obtained by replacing every point in X with a copy of Y . Concretely, we have that
every x ∈ X determines a corresponding interval in XY that is isomorphic to Y ,
namely the set of points {(x, y) : y ∈ Y }. We denote this interval by xY . Given
a suborder E ⊆ X, we have that the suborder EY of XY is exactly

⋃
x∈E xY .

Observe that if E is an interval in X, then EY is an interval in XY .
The sum and the product are associative operations, in the sense that for all

linear ordersX,Y , and Z we haveX+(Y+Z) ∼= (X+Y )+Z, andX(Y Z) ∼= (XY )Z.
Neither operation is commutative in general.

We write ω for the set of natural numbers {0, 1, 2, . . .} arranged in their usual
order 0 < 1 < 2 < . . ., and ω∗ for the set of natural numbers in their reverse
order . . . < 2 < 1 < 0. Let Z denote the integers in their usual order, and
note that Z ∼= ω∗ + ω. We identify every n ∈ ω with the set of its predecessors
{0, 1, 2, . . . , n−1} and equip n with the inherited order from ω. So ordered, n is the
unique linear order whose cardinality is n, up to isomorphism. Note that for any
linear order X we have 2X ∼= X +X. More generally, we have 3X ∼= X +X +X,
4X ∼= X +X +X +X, and so on.

2.2. Replacements and condensations. The notion of a replacement generalizes
both the notions of sum and lexicographic product. Given a linear order X and a
collection of linear orders {Ix}x∈X indexed by the points in X, we write X(Ix) for
the replacement of X by the orders Ix. Visually, X(Ix) is the order obtained by
replacing every point x ∈ X with the corresponding order Ix. Formally X(Ix) is
the order whose underlying set is {(x, i) : x ∈ X, i ∈ Ix} ordered lexicographically
by the rule (x, i) < (x′, i′) if x < x′ (in X), or x = x′ and i < i′ (in Ix = Ix′). We
will assume that the replacing orders Ix are nonempty. If there is an order Y such
that Ix = Y for every x ∈ X, we have X(Ix) = XY . If X = 2 = {0, 1}, then X(Ix)
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is isomorphic to the sum I0+I1. We will often identify each replacing order Ix with
the corresponding interval {(x, i) : i ∈ Ix} in X(Ix), and simply write Ix to refer to
this interval. In view of the case when X(Ix) = XY is a product, it would be more
consistent with the notation we introduced above (and more precise) to denote this
interval by xIx. When precision is called for, we will use this more precise notation.
For a suborder E ⊆ X, we write E(Ix) for the suborder

⋃
x∈E Ix of X(Ix).

Inverse to the notion of a replacement is the notion of a condensation, which
is an equivalence relation ∼ on X whose equivalence classes are intervals. That
is, an equivalence relation ∼ on X is a condensation if whenever x < z < y in X
and x ∼ y we have x ∼ z ∼ y. Given a condensation ∼ and a point x ∈ X, we
write c(x) for the equivalence class of x. We write X/ ∼ for the set of equivalence
classes {c(x) : x ∈ X}. The map c : X → X/ ∼ is the condensation map. Since the
elements of X/ ∼ are disjoint intervals in X, they are naturally linearly ordered by
the rule c(x) < c(y) if c(x) ̸= c(y) and x < y in X. We call this order the induced
order on X/ ∼.

We can recast the previous two paragraphs in the language of homomorphisms.
An order homomorphism is a map c : X → L from an order X to an order L
such that for all x, y ∈ X we have x < y ⇒ c(x) ≤ c(y). For any such map and
any x ∈ X, the set {y ∈ X : c(y) = c(x)} is an interval of X containing x. It
follows that if we define a relation ∼c on X by the rule x ∼c y if c(x) = c(y),
then ∼c is a condensation of X. The condensed order X/ ∼ is isomorphic to the
image c[X] ⊆ L. If c is onto, we have X/ ∼ ∼= L. It is often convenient in this
situation to identify X/ ∼ with L and think of the original homomorphism c as the
condensation map for ∼c.

Given a replacement X(Ix), there is a natural homomorphism c : X(Ix) → X
defined by c(x, i) = x. The corresponding condensation is the relation ∼ defined by
(x, i) ∼ (x′, i′) if x = x′. The condensation classes are exactly the replacing orders
Ix and we have X(Ix)/ ∼ ∼= X.

In the other direction, if we are given a condensation ∼ on a linear order X, or
equivalently a surjective homomorphism c : X → L from X onto a linear order L,
we can replace each point l ∈ L by the condensation class Il = c−1(l) ⊆ X. The
resulting order L(Il) is isomorphic to X. (If we view L as X/ ∼, then we have
replaced each point c(x) ∈ X/ ∼ with the interval c(x) ⊆ X.) In this situation we
view X as having been equipped with new coordinates via the isomorphism x 7→
(l, i) witnessing X ∼= L(Il). If we identify X with L(Il) via this isomorphism, then
the homomorphism c is the projection map c(l, i) = l from the previous paragraph.

We can iterate replacements and compose condensation maps. Given a re-
placement X(Ix) and orders J(x,i) for every (x, i) ∈ X(Ix), we can form the re-
placement X(Ix)(J(x,i)). This double replacement process is associative, in the
sense that we could have instead formed the replacement Ix(J(x,i)) for each fixed
x ∈ X, and then replaced each x by Ix(J(x,i)) to form X(Ix(J(x,i))). Clearly
X(Ix)(J(x,i)) ∼= X(Ix(J(x,i))) via the isomorphism ((x, i), j) 7→ (x, (i, j)). We iden-
tify these orders and refer to their points with triples (x, i, j). In the other direc-
tion we have the natural condensation maps c : X(Ix)(J(x,i)) → X(Ix) defined by
c(x, i, j) = (x, i) and d : X(Ix) → X defined by d(x, i) = x. The composed map
d ◦ c condenses X(Ix)(J(x,i)) onto X.

Finally, we consider the situation in which we are given a replacement X(Jx) and
we condense the replaced order X. Let c : X → L denote the condensation map. As
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above, we may view X itself as a replacement L(Il) in which the replacing orders Il
are the condensation classes ofX. We may then viewX(Jx) as a double replacement
L(Il)(Jx). But to make this notation sensible, we need to relabel each of the original
replacing orders Jx as J(l,i), where (l, i) are the new coordinates of x given by the
isomorphism witnessing X ∼= L(Il). Now we can write X(Jx) ∼= L(Il)(J(l,i)).

We will be especially interested in the so-called finite condensation. Given a
linear order X and x, y ∈ X, we write x ∼F y if the interval [{x, y}] is finite. It is
easily verified that the relation ∼F is a condensation of X, that we call the finite
condensation of X. We denote the condensation map of the finite condensation
by cF . It is not hard to see that for any order X and any point x ∈ X, the
condensation class cF (x) is either finite or isomorphic to one of the orders ω, ω∗,
or Z. For example, if X = Z+5+ω∗, then X has three finite condensation classes,
namely the initial segment Z, the middle segment 5, and the final segment ω∗, so
that X/ ∼F

∼= 3. In contrast, if X = Z+5+ω we have X/ ∼F
∼= 2, since the final

segment 5 + ω ∼= ω constitutes a single condensation class.

2.3. Associations. Ultimately we are interested in understanding when an order
X can be cancelled in isomorphisms of the form XA ∼= XB, but much of our work
will be in analyzing isomorphisms of the more general form XA ∼= Y B. In this
section we introduce a way of associating points in the order X to points in Y
given such an isomorphism.

Suppose that X,Y,A, and B are linear orders and f : XA → Y B is an iso-
morphism. It is natural to ask how the partitions {xA : x ∈ X} of XA and
{yB : y ∈ Y } of Y B interact with one another via the isomorphism f . For exam-
ple, in the extreme case it may be that for every x ∈ X there is a (unique) y ∈ Y
such that f [xA] = yB. Then, not only does f witness the isomorphism A ∼= B
X-many times, but moreover f induces an isomorphism of X and Y , namely the
map F defined by F (x) = y if f [xA] = yB.

However, f need not respect the partitions to such a degree, and in general it
need not be that either A ∼= B or X ∼= Y . For instance, for a given copy xA of
A in XA, it may be that the image f [xA] is strictly contained in a copy yB of B,
or it may span an interval of such copies {yB : y ∈ I for some interval I ⊆ B}.
It could be that there is a leftmost copy yB of B that intersects f [xA], and in
this case it may be that f [xA] does not completely contain yB but only some
strict final segment of yB. Symmetrically, there could be some rightmost copy of
B intersecting f [xA] that may or may not be contained in f [xA]. We formalize
these observations below. It will be useful to work in the more general context of
replacements instead of products.

Definition 2.3.1. Suppose that X(Ix) and Y (Jy) are replacements of the linear
orders X and Y and f : X(Ix) → Y (Jy) is an isomorphism.

For every x ∈ X, define Rf (x) = {y ∈ Y : f [Ix] ∩ Jy ̸= ∅}. We call Rf the
association of X with Y relative to f .

For a given x ∈ X, we say that Rf (x) is the set of points in Y associated to x
by f , and if y ∈ Rf (x) we say that y is associated to x by f . Given a suborder
E ⊆ X, we write Rf [E] for

⋃
x∈E Rf (x). Since f−1 : Y (Jy) → X(Ix) is also an

isomorphism, we may also consider Rf−1 . Since we will be usually be working with
respect to a fixed isomorphism f , we often drop the subscripts and write R for Rf

and R−1 for Rf−1 .
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We collect some basic facts about the association R.

Lemma 2.3.2. (Association lemma) Suppose that X(Ix) and Y (Jy) are replace-
ments of the linear orders X and Y and f : X(Ix) → Y (Jy) is an isomorphism. Let
R = Rf be the association of X and Y relative to f .

i. For every suborder E ⊆ X, we have f [E(Ix)] ⊆ R[E](Jy).
ii. For every pair of suborders E ⊆ X and G ⊆ Y , we have f [E(Ix)] = G(Jy)

if and only if R[E] ⊆ G and R−1[G] ⊆ E.
iii. For every suborder E ⊆ X, we have f [E(Ix)] = R[E](Jy) if and only if

R−1[R[E]] = E.
iv. For every interval E ⊆ X, if y1, y3 ∈ R[E] and y1 < y3, then for any y2 ∈ Y

such that y1 < y2 < y3 we have Jy2
⊆ f [E(Ix)].

v. For every interval E ⊆ X, R[E] is an interval in Y .
vi. For every interval E ⊆ X, we have R[E](Jy) ̸= f [E(Ix)] if and only if there

exists y ∈ R[E] such that y is the least or greatest element of R[E] and
Jy ̸⊆ f [E(Ix)].

Proof. (i.) Given b ∈ f [E(Ix)] there is a unique y ∈ Y such that b ∈ Jy. Then
Jy ∩ f [E(Ix)] ̸= ∅, which gives y ∈ R[E]. Therefore b ∈ R[E](Jy).

(ii.) Suppose f [E(Ix)] = G(Jy). Then by definition of R we have R[E] = G.
Likewise we have E(Ix) = f−1[G(Jy)] so that R−1[G] = E.

Now suppose R[E] ⊆ G and R−1[G] ⊆ E. By (i.) we have f [E(Ix)] ⊆
R[E](Jy) ⊆ G(Jy). Likewise, f

−1[G(Jy)] ⊆ R−1[G](Ix) ⊆ E(Ix). Thus, f [E(Ix)] =
G(Jy).

(iii.) Suppose first that f [E(Ix)] = R[E](Jy). Then by (ii.) (taking G = R[E])
we have R−1[R[E]] ⊆ E. For the reverse containment, fix x ∈ E. For any y ∈ R(x),
we have f [Ix] ∩ Jy ̸= ∅, which gives Ix ∩ f−1(Jy) ̸= ∅, and so x ∈ R−1(y). Thus
x ∈ R−1[R(x)]. In particular, x ∈ R−1[R[E]].

Now suppose R−1[R[E]] = E. Then it follows immediately from (ii.) (again
taking G = R[E]) that f [E(Ix)] = R[E](Jy).

(iv.) Since y1, y3 ∈ R[E], we may fix points b1, b3 ∈ Y (Jy) with b1 ∈ f [E(Ix)] ∩
Jy1

and b3 ∈ f [E(Ix)]∩ Jy3
. For all b ∈ Jy2

, we have b1 < b < b3. Since f [E(Ix)] is
an interval in Y (Jy) (as E(Ix) is an interval in X(Ix) and f is an isomorphism), it
follows that b ∈ f [E(Ix)].

(v.) Immediate from (iv.).
(vi.) If R[E](Jy) ̸= f [E(Ix)] then there is y ∈ R[E] such that Jy ̸⊆ f [E(Ix)]. If

y is not the least or greatest element of the interval R[E] then by (iv.) we have
Jy ⊆ f [E(Ix)]. Thus, y must be the least or greatest element of R[E]. The other
direction is immediate. □

In the case when Ix = A and Jy = B for all x ∈ X and y ∈ Y , we obtain the
following corollary.

Corollary 2.3.3. Suppose that X,Y,A, and B are linear orders and f : XA → Y B
is an isomorphism. Let R = Rf be the association of X and Y relative to f .

i. For every suborder E ⊆ X, we have f [EA] ⊆ R[E]B.
ii. For every pair of suborders E ⊆ X and G ⊆ Y , we have f [EA] = GB if

and only if R[E] ⊆ G and R−1[G] ⊆ E.
iii. For every suborder E ⊆ X, we have f [EA] = R[E]B if and only ifR−1[R[E]]

= E.
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iv. For every interval E ⊆ X, if y1, y3 ∈ R[E] and y1 < y3, then for any y2 ∈ Y
such that y1 < y2 < y3 we have y2B ⊆ f [EA].

v. For every interval E ⊆ X, R[E] is an interval in Y .
vi. For every interval E ⊆ X, we have R[E]B ̸= f [EA] if and only if there

exists y ∈ R[E] such that y is the least or greatest element of R[E] and
yB ̸⊆ f [EA].

Proof. Immediate from Lemma 2.3.2. □

Given an isomorphism f : XA → Y B, it will be helpful to see not only how f
associates points in X to points in Y , but also how it associates finite condensation
classes in X to those in Y . Here is an example that illustrates the kind of infor-
mation that may be gained. Suppose I ⊆ X is a finite condensation class (that
is I = cF (x) for any x ∈ I). If R[I] contains inequivalent points y ̸∼F y′, then
since the interval [{y, y′}] ⊆ Y is infinite, there must exist a point x ∈ I such that
R(x) is infinite. It follows that f [xA], and thus also A, contains an interval that is
isomorphic to an infinite product of B. If we know beforehand that A does not con-
tain such an interval, this example shows that the way in which finite condensation
classes in X and Y are associated by f is significantly constrained.

We formalize this observation, working again for the moment in the more gen-
eral context of replacements. Suppose that f : X(Ix) → Y (Jy) is an isomor-
phism. Suppose that we condense X and Y onto the orders L and K via the
condensation maps c : X → L and d : Y → K. As we observed in the previous
subsection, X and Y are isomorphic to replacements L(Ml) and K(Nk), where
the replacing orders Ml and Nk are the condensation classes c−1(l) and d−1(k).
By substituting L(Ml) for X and K(Nk) for Y , and rewriting the original re-
placing orders Ix and Jy with new coordinates I(l,m) and J(k,n), we obtain an
isomorphism F : L(Ml)(I(l,m)) → K(Nk)(J(k,n)). The isomorphism F is essen-
tially the original isomorphism f , and is equal to f if we identify X with L(Ml)
and Y with K(Nk). We make these identifications, and write f : L(Ml)(I(l,m)) →
K(Nk)(J(k,n)). We may view L(Ml)(I(l,m)) as a replacement of L by writing it as
L(Ml(I(l,m))). Likewise we may view K(Nk)(J(k,n)) as K(Nk(J(k,n))), and instead
write f : L(Ml(I(l,m))) → K(Nk(J(k,n))).

Let Sf = S denote the association of L and K relative to f , so that for l ∈ L
we have S(l) = {k ∈ K : f [Ml(I(l,m))] ∩Nk(J(k,n)) ̸= ∅}. While both S and R are
associations relative to the isomorphism f , S associates points one level up from R,
in the condensed orders L and K instead of the original orders X and Y . Often, we
think of S as an association relative to the association R, viewing R as a map that
takes intervals in X = L(Ml) to intervals in Y = K(Nk). For example, observe
that we could have equivalently defined S by S(l) = {k ∈ K : R[Ml] ∩Nk ̸= ∅}.

The following is a one-level-up version of the association lemma 2.3.2.

Lemma 2.3.4. Suppose thatX(Ix) and Y (Jy) are replacements of the linear orders
X and Y and f : X(Ix) → Y (Jy) is an isomorphism. Suppose that c : X → L and
d : Y → K are condensations. Let L(Ml),K(Nk), R and S be defined as above.

i. For every suborder E ⊆ L, we have R[E(Ml)] ⊆ S[E](Nk).
ii. For every pair of suborders E ⊆ L and G ⊆ K, we have R[E(Ml)] = G(Nk)

if and only if S[E] ⊆ G and S−1[G] ⊆ E.
iii. For every suborder E ⊆ L, we have R[E(Ml)] = S[E](Nk) if and only if

S−1[S[E]] = E.
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v. For every interval E ⊆ L, if k1, k3 ∈ S[E] and k1 < k3, then for any k2 ∈ K
such that k1 < k2 < k3 we have Nk2

⊆ R[E(Ml)].
v. For every interval E ⊆ L, S[E] is an interval in K.
vi. For every interval E ⊆ L, we have S[E](Nk) ̸= R[E(Ml)] if and only if

there exists k ∈ S[E] such that k is the least or greatest element of S[E]
and Nk ̸⊆ R[E(Ml)].

Lemma 2.3.4 is not literally an instance of the association lemma, but its proof
is similar and we leave it out.

We now specialize to the situation in which the condensations c and d are the
finite condensations of X and Y , and Ml and Nk are the corresponding finite con-
densation classes. The lemma below generalizes and expands upon our observations
after Corollary 2.3.3.

Lemma 2.3.5. Suppose that f : X(Ix) → Y (Jy) is an isomorphism. Let cF : X →
L and dF : Y → K be the finite condensations of X and Y . Let L(Ml),K(Nk), R
and S be defined as above.

i. If E ⊆ X is a finite interval and R[E] is infinite, then there exists x ∈ E
such that R(x) is infinite.

ii. If there exists l ∈ L such that |S(l)| > 1, then there exists x ∈ Ml such
that R(x) is infinite.

iii. If for all y ∈ Y we have that R−1(y) is finite, then for all l ∈ L we have
R[Ml] = S(l)Nk (equivalently, f [Ml(I(l,m))] = S(l)Nk(J(k,n))).

iv. If for all x ∈ X and y ∈ Y both R(x) and R−1(y) are finite, then S(l) is
a singleton for every l ∈ L, and S induces an isomorphism s from L to K
defined by letting s(l) be the unique k ∈ K such that S(l) = {k}.

Moreover, for all l ∈ L we have R[Ml] = Ns(l), and either Ml and Ns(l)

are both finite or Ml
∼= Ns(l).

Proof. (i.) For all y ∈ R[E] there exists x ∈ E such that y ∈ R(x). By the
pigeonhole principle, there exists x ∈ E such that R(x) is infinite.

(ii.) Let ka and kb be distinct elements of S(l). Fix a ∈ Nka
and b ∈ Nkb

. Since
a and b belong to distinct finite condensation classes, the interval [{a, b}] is infinite.
Furthermore, there exist q, p ∈ Ml such that a ∈ R(q) and b ∈ R(p). Since q ∼F p,
the interval [{q, p}] is finite. Since [{a, b}] ⊆ R[[{q, p}]], we have that R[[{q, p}]] is
infinite. By (i.), there exists an x ∈ [{q, p}] ⊆ Ml such that R(x) is infinite.

(iii.) Since R−1(y) is finite for all y ∈ Y , we have by (ii.) (applied to R−1 and
S−1) that |S−1(k)| = 1 for all k ∈ K. Therefore, for all l ∈ L and all k ∈ S(l),
we have S−1(k) = {l}, which gives S−1(S(l)) = {l}. By Lemma 2.3.4(iii.) we have
R[lMl] = R[Ml] = S(l)Nk.

(iv.) As in (iii.) we have that for every l ∈ L and k ∈ S(l) that S−1(S(l)) = {l}.
By a symmetric argument, now using the hypothesis that R(x) is finite for all
x ∈ X, we have that S(l) is a singleton {k} for every l ∈ L. Moreover, for every
k ∈ K and l ∈ S−1(k) that S(S−1(k)) = {k}. It follows that S induces a bijection
s : L → K, where s(l) is defined to be the unique k such that S(l) = {k}. This
bijection is clearly order-preserving, hence an isomorphism of K and L.

For the second claim, fix l ∈ L and let k = s(l). If Ml and Nk are not finite,
then they are isomorphic to one of ω, ω∗, or Z. Toward a contradiction, suppose
Ml ̸∼= Nk. Then one of Ml or Nk is not isomorphic to Z. Without loss of generality,
assume that Ml ̸∼= Z, and furthermore that Ml

∼= ω (the case when Ml
∼= ω∗ is
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symmetric). Then Nk is either ω∗ or Z. In either case, every strict initial segment
of Nk is isomorphic to ω∗. If x is the minimum point in Ml, the interval Ix is a strict
initial segment of Ml(I(l,m)), so that f [Ix] is a strict initial segment of Nk(J(k,n)).
It follows f [Ix] contains infinitely many intervals of the form Jy, so that R(x) is
infinite, contradicting (i.). □

3. Proof of the main theorem

Recall that a linear order X is left-absorbing (respectively right-absorbing) if
there is a linear order L ̸∼= 1 such that LX ∼= X (respectively XL ∼= X), and
right-cancelling (respectively left-cancelling) if for every pair of orders A and B we
have AX ∼= BX ⇒ A ∼= B (respectively, XA ∼= XB ⇒ A ∼= B). The assertion
that an order X is not left-absorbing can be viewed as an assertion about the right-
cancellability of X in certain isomorphisms. Namely, for every order L we have
LX ∼= 1X ⇒ L ∼= 1. Morel’s theorem, quoted in the introduction, says that this
special type of right cancellation for X actually implies that X is right-cancelling
outright.

The strict analogue of Morel’s theorem on the other side would be that if an
order X is not right-absorbing, then X is left-cancelling. We will show in the next
section that this analogue is false. Our goal in this section is to prove that if X
is not right-absorbing, then while X may not be cancellable in every isomorphism
of the form XA ∼= XB, it is cancellable in every such isomorphism in which the
orders A and B are not left-absorbing. We will show in the next section that this
weaker form of left cancellation is the best that one can hope for in general, if all
that one assumes of X is that it is not right-absorbing.

The proof depends on an analysis of the more general isomorphism XA ∼= Y B
under the assumption that the orders A and B are not left-absorbing. This hypoth-
esis may seem peculiar, but it turns out to be a natural one to make. Roughly, it
forces any isomorphism f : XA → Y B to behave much more like an isomorphism
between products of finite linear orders than it otherwise might if A and B were
allowed to absorb on the left.

To motivate this hypothesis further and foreshadow the results we are going
to prove, let us consider the case when x, y, a, b ∈ ω are natural numbers and
xa ∼= yb. In this situation there is a unique isomorphism f : xa → yb, and indeed,
viewing xa and yb as products of natural numbers in the usual sense we have
xa = yb. Nonetheless, let us ignore for the moment that the lexicographic product
is commutative on the natural numbers, and think of xa ∼= yb as expressing that
x-many copies of a are order-isomorphic to y-many copies of b.

Without loss of generality, suppose that b ≤ a. This corresponds in the general
case to assuming that B embeds convexly in A. If in fact b ∼= a, then because of
the finiteness of the orders involved, any isomorphism f : xa → yb must send each
copy of a onto a corresponding copy of b, and thereby witness that x ∼= y. It could
also be that a is isomorphic to a product lb of b. Then, any isomorphism sends
each copy of a onto l-many consecutive copies of b, and witnesses that y ∼= xl. A
third possibility is that c, the greatest common divisor of a and b, is strictly less
than b. If a = nc and b = mc, then our isomorphism becomes xnc ∼= ymc, and any
fixed isomorphism f witnesses xn ∼= ym. The first and second cases are redundant
with the third if we allow one or both of n and m to be 1. We separate them here
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since we will consider corresponding cases that are not redundant when the orders
in question are allowed to be infinite.

In the general case when XA ∼= Y B, a similar breakdown is impossible if the
right-hand factors A and B are allowed to be left-absorbing. For example, suppose
that A ∼= B ∼= 2B. Then A ∼= B ∼= nB for every n ∈ ω. As we have observed,
in this situation it need not be that XA ∼= Y B implies X ∼= Y . The simplest
instance of this is when X = 1 and Y = 2, but there are many others. We also have
mA ∼= nB for any n,m ∈ ω. Moreover, for a given isomorphism f : mA → nB,
there need not be any uniformity in how f maps copies of A onto copies of B. It
may be for example that f takes the leftmost copy of A in mA isomorphically onto
the leftmost copy of B in nB, and then takes the next copy of A onto the following
three copies of B, and then the next ten copies of A onto the following copy of B,
and so on. If we assume that A and B are not left-absorbing, this kind of flexible
compressibility is not allowed, and we will see that an isomorphism f : XA → Y B
must much more rigidly respect the partitions {xA : x ∈ X} and {yB : y ∈ Y }.

We will case out our analysis of the isomorphism XA ∼= Y B according to how
the orders A or B convexly embed in one another. If A and B are finite then either
A ∼= B or exactly one of the two convexly embeds in the other. In general it may
also hold that neither A nor B convexly embeds in the other, or that A and B are
convexly bi-embeddable. We go through these three cases in turn.

3.1. A ̸≲c B and B ̸≲c A. We first consider the case when XA ∼= Y B and neither
A nor B convexly embeds in the other. This condition puts a strong restriction on
any isomorphism f : XA → Y B. Namely, for every x ∈ X, the image f [xA] of the
interval xA cannot cover any of the intervals yB, as otherwise this would witness
that B embeds convexly in A. Thus it must be that f [xA] intersects exactly two
intervals y1B and y2B, intersecting y1B in a final segment and y2B in an initial
segment, where y1 < y2 are consecutive points in Y . Symmetrically, for every y ∈ Y
we must have f−1[yB] intersects two consecutive copies of A in XA. Unpacking
this observation gives the following.

Theorem 3.1.1. Suppose X,Y,A, and B are linear orders. If XA ∼= Y B and
neither A nor B convexly embeds in the other, then for some order L we have
X ∼= Y ∼= LZ.

Proof. Fix an isomorphism f : XA → Y B. Let cF : X → L and dF : Y → K
be the finite condensations of X and Y respectively. We write X = L(Ml) and
Y = K(Nk), where Ml and Nk denote the finite condensation classes of X and Y ,
so thatXA = L(MlA) and Y B = K(NkB). Since neither A nor B convexly embeds
in the other, by the discussion above we have, for every x ∈ X and y ∈ Y , that
R(x) and R−1(y) are intervals of size 2. By Lemma 2.3.5.iv, there is an isomorphism
s : L → K. Moreover, for every l ∈ L we have R[Ml] = Ns(l), and either Ml and
Ns(l) are both finite or Ml

∼= Ns(l).
We claim that we must have Ml

∼= Ns(l), and in fact Ml
∼= Ns(l)

∼= Z. To see
this, we have to rule out the case that both Ml and Ns(l) are finite, as well as
the cases Ml

∼= Ns(l)
∼= ω and Ml

∼= Ns(l)
∼= ω∗. Suppose Ml and Ns(l) are both

finite, and suppose x and y are the least points in Ml and Ns(l) respectively. Since
R[Ml] = Ns(l) gives that f [MlA] = Ns(l)B, it must be that the image f [xA] of the
initial segment xA of MlA either includes or is included in the initial segment yB
of Ns(l)B. But then either A convexly embeds in B or B in A, a contradiction.
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The argument is similar if Ml
∼= Ns(l)

∼= ω, and symmetric when Ml
∼= Ns(l)

∼= ω∗.
Thus Ml

∼= Ns(l)
∼= Z for every l ∈ L, as claimed. Collecting the above gives that

X ∼= LZ ∼= Y , as claimed. □

Notice that in this case we did not need to assume that A and B are not left-
absorbing, and we were able to conclude that X ∼= Y outright.

The hypotheses in the theorem can be realized. For example, let A = Z and
B = ω + ω∗, and let X = Y = Z. Notice that neither A nor B convexly embeds in
the other. It is not hard to check that XA ∼= Y B, that is, ZZ ∼= Z(ω+ω∗). In this
case, the conclusion of the theorem holds with L = 1.
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