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Abstract. In the first half of the 20th century, several remarkable results were
proved about the arithmetic of the class (LO,+) of linear orders equipped

with the ordered sum. Outstanding among these results are a cancellation

theorem and Euclidean division theorem for (LO,+) due to Lindenbaum, and
a theorem of Aronszajn that characterizes the additively commuting pairs

of linear orders. Although these results generalize basic facts about natural
numbers, the published proofs are somewhat difficult and ad hoc.

In this paper, we develop a unified approach to the arithmetic of (LO,+)

by studying automorphism groups of orders X = · · · + A + A + A + · · · that
can be decomposed as infinite Z-sums of a fixed order A. Using this approach,

we get new proofs of Lindenbaum’s cancellation and division theorems, and

Aronszajn’s commuting pairs theorem. Our proofs give much more structural
information than the originals, and show that all three theorems are closely

related to arithmetic in the ordered group (R,+, <).

We make crucial use of Hölder and Conrad’s classical characterization of
the Archimedean orderable groups, and Holland and McCleary’s classification

of primitive group actions on linear orders. In the other direction, we show

how certain additive identities for linear orders can be used to help prove
these algebraic theorems. Finally, we extend our study to semigroups acting

by convex order-embeddings on one-sided infinite sums, and obtain a number
of new identities for such sums.

1. Introduction

Let LO denote the class of linear orders. Given two linear orders A and B, their
ordered sum A+B is the order obtained by placing a copy of B to the right of A.

Our goal in this paper is to study the arithmetic of (LO,+). We will be especially
interested in three theorems, two due to Lindenbaum (13 and 14 in [7, pg. 195])
and the other to Aronszajn ([1], Theorem 1), that concern pairs of linear orders A
and B that satisfy an identity of one of the following forms:

nA ∼= mB,
A+B ∼= B +A.

Here, n and m are nonzero natural numbers; nA and mB denote the n-fold sum
A+ A+ · · ·+ A and m-fold sum B + B + · · ·+ B, respectively. The first identity
asserts that the orders A and B have a common finite multiple, and the second
that A and B form an additively commuting pair.

Both of these identities assert an isomorphism between two finite sums of linear
orders. It turns out, however, that if A and B are orders satisfying either identity,
then the infinite Z-sums of A and B are also isomorphic. That is we have:

ZA ∼= ZB,
1
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where
ZA = · · ·+A+A+A+ · · · ,
ZB = · · ·+B +B +B + · · · .

Our approach to understanding these identities will be to study the order-
automorphism groups of such Z-sums. Using these groups, we give new, uniform
proofs of Lindenbaum’s and Aronszajn’s theorems. Our proofs yield enough struc-
tural information about the orders involved to characterize the solutions to not only
the finitary identities nA ∼= mB and A + B ∼= B + A, but also to the infinitary
identity ZA ∼= ZB that generalizes both.

We then extend our study to semigroups of convex self-embeddings of one-sided
infinite sums of the forms

ωA = A+A+ · · · ,
ω∗A = · · ·+A+A,

and analogously characterize the solutions to the identities

ωA ∼= ωB,
ω∗A ∼= ω∗B.

Our approach to all of these arithmetic identities relies crucially on algebraic
results from two sources. The first is Hölder and Conrad’s characterization of the
Archimedean orderable groups (see Theorem 4.4.4 below). The second is the theory
of group actions on linear orders as developed by Holland, McCleary and others,
and especially Holland and McCleary’s classification of so-called primitive actions
G ↷ (X,<).

None of these authors seems to have been aware of Lindenbaum’s or Aronszajn’s
theorems, nor of any connection between their results and the arithmetic of (LO,+).
But in hindsight there is a very close connection between these two lines of work.
Indeed, we will show that not only can we get better proofs of Lindenbaum’s and
Aronszajn’s theorems via the theory of group actions on linear orders, but many of
the basic arithmetic propositions about sums of linear orders due to Lindenbaum
can in turn be used to give more combinatorial proofs of the algebraic results cited
above.

1.1. Commuting and dividing in (LO,+): Lindenbaum’s and Aronszajn’s
theorems. If we view each natural number n as a finite linear order with n-many
points (identifying 0 with the empty order ∅), then the ordered sum agrees with
the familiar sum + on N, and can be viewed as an extension of this operation to
the much larger class LO.

The arithmetic of (LO,+) is much less well-behaved than the arithmetic of
(N,+) in general. For one, we lose commutativity: A + B ∼= B + A can (and
typically does) fail for infinite orders A and B. Moreover, infinite orders can have
“infinitary” additive properties that natural numbers cannot possess. In the study
of (LO,+), one-sided absorption properties play an especially important role. These
are expressed by the following identities:

A+X ∼= X (left absorption),
X +A ∼= X (right absorption).

If A and X are natural numbers, then these isomorphisms hold only if A = 0.
But for general linear orders X, it is possible that A ̸∼= 0 and one or both of these
isomorphisms hold.
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A strong form of absorption is splitting, when an order X can be partitioned into
a left and right copy of itself:

X +X ∼= X (splitting).

Again, the only natural number that satisfies this isomorphism is X = 0, but
there is a rich array of infinite orders X that satisfy splitting. The existence of
nontrivial solutions to the absorption and splitting identities rules out additive
cancellation laws for (LO,+), since in such identities the absorbing factor X cannot
be cancelled.

It is perhaps all the more remarkable then that, despite these differences, there
are several arithmetic laws for (N,+) that extend verbatim to (LO,+). The most
striking of these were discovered by Lindenbaum, who showed that finite multi-
plicative cancellation holds in LO, and that division by natural numbers can be
carried out in LO in the strongest possible sense.

As above, given a natural number n and linear order X, let nX denote the n-fold
sum X +X + · · ·+X.

Cancellation theorem. (Lindenbaum; 13 in [7, pg. 195]) Suppose that n is a
nonzero natural number and A and B are linear orders. If nA ∼= nB, then A ∼= B.

Division theorem. (Lindenbaum; 14 in [7, pg. 195]) Suppose that n and m are
nonzero natural numbers with gcd (n,m) = 1, and A and B are linear orders. If
nA ∼= mB, then there is a linear order C such that A ∼= mC and B ∼= nC.

The cancellation theorem implies that the order C from the division theorem is
unique up to isomorphism. Taken together, Lindenbaum’s theorems give that if A
and B are linear orders that share a common (finite) multiple, then in fact A and
B have a least common multiple as well as a greatest common divisor.

More precisely, suppose there are nonzero natural numbers n and m such that
nA ∼= mB. By factoring out k = gcd (m,n) from m = km′ and n = kn′, we may
rewrite nA ∼= mB as k(m′A) ∼= k(n′B). Applying the cancellation theorem, we
obtain the reduced isomorphism m′A ∼= n′B, where now m′ and n′ are coprime.
The order Z ∼= m′A ∼= n′B may be viewed as the least common multiple of A and
B. Then by the division theorem there exists a linear order C, which may be viewed
as the greatest common divisor of A and B, such that A ∼= m′C and B ∼= n′C.

The history of these theorems is peculiar. They were announced in a joint paper
[7] with Tarski in 1926, but without proofs. Proofs would not appear until nearly
30 years later, after Lindenbaum’s death, in another book [11] authored solely by
Tarski. In that book, Tarski does not prove the cancellation and division laws
for (LO,+) directly. Instead, he axiomatizes a type of abstract structure that he
calls an ordinal algebra. Such algebras come equipped with an operation + that
generalizes the ordered sum on LO. Tarski shows, from his axioms, that cancellation
and division hold in an arbitrary ordinal algebra, and then deduces Lindenbaum’s
cancellation and division laws for the specific ordinal algebra (LO,+).

Though Tarski’s proofs of Lindenbaum’s theorems are elegant in that they are
derived axiomatically, they are somewhat complicated and difficult. Moreover, they
rely on a great deal of local combinatorial calculation that, even when translated
into the specific class of linear orders, does not give global structural information
about the orders involved. Nor do the proofs relate the arithmetic in ordinal alge-
bras such as (LO,+) to a familiar arithmetic context like (N,+) or (R,+).
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Around the same time as the publication of Tarski’s book, and in response to
a question of Tarski, Aronszajn [1] was able to give a structural characterization
of the additively commuting pairs of linear orders, i.e. the pairs of linear orders A
and B for which the isomorphism A + B ∼= B + A does hold. Aronszajn showed
that such pairs are obtained by replacing the points in a closed interval of R with
linear orders in a way that respects a group of translations on R; see Theorem 3.5.5
below for a precise statement. We will call this result Aronszajn’s commuting pairs
theorem.

While Aronszajn’s proof of his theorem establishes a connection between sums
of linear orders and the group of real numbers (R,+), it is also complicated and ad
hoc. However, in its basic approach the proof has an advantage over Tarski’s proofs
of the cancellation and division theorems. Instead of analyzing the orders A and
B directly, Aronszajn passes to the Z-sum · · ·+A+B +A+B + · · · and extracts
his characterization by analyzing the order-automorphisms of this sum that are
generated (in a precise sense) by the isomorphism A+B ∼= B +A.

Analyzing the automorphism groups of Z-sums is exactly the approach to the
study of (LO,+) that we take in this paper, and one of our contributions will be to
show that this approach can be used to prove Lindenbaum’s theorems as well. An
advantage of our proofs over Aronszajn’s is that we will first systematically develop
the theory of groups of automorphisms of Z-sums, and then apply this theory to
get proofs of both Lindenbaum’s and Aronszajn’s theorems. In the course of doing
so, we will show that all three theorems can be much more transparently related to
arithmetic in (R,+) by proving that in many instances there are canonical quotients
of such groups that are Archimedean orderable, and hence isomorphic to a subgroup
of (R,+) by the Hölder-Conrad theorem.

In our development we will recover several results about group actions on linear
orders proved originally by Holland, McCleary and others in the decades following
Aronszajn’s paper. However, our proofs of these results will be grounded in the
order-arithmetic perspective of this paper as opposed to the algebraic perspective
in which they were first established, and will make use of many of the basic facts
about sums of linear orders proved by Lindenbaum in 1926.

1.2. The splitting dichotomy, and an overview of the proofs of the can-
cellation and division theorems. Lindenbaum’s theorems show that, in a quite
general sense, division by natural numbers can be carried out (LO,+) just as in
(N,+) or (R,+). But the statements of these theorems hide the fact that division
in (LO,+) takes place in two very different ways, depending on whether the order
being divided is splitting or non-splitting.

Suppose that A and B are linear orders. It can be shown that if A and B have
a common finite multiple nA ∼= mB, then A is splitting (i.e. A ∼= A + A ∼= 2A)
if and only if B is splitting. Thus for the cancellation and division theorems there
are only two possibilities: the orders A and B named in the theorems are both
splitting, or they are both non-splitting.

In the splitting cases the proofs are trivial. Indeed, if A and B are splitting,
observe that we have A ∼= kA and B ∼= lB for any k, l ≥ 1. Thus if nA ∼= nB,
we immediately get A ∼= B, since in this case kA ∼= lB for any k, l ≥ 1. Similarly,
if nA ∼= mB for some coprime n,m ∈ N, then certainly we can find C as in the
statement of the division theorem: take C = A (or just as well C = B). Then
A ∼= mC and B ∼= nC for the trivial reason that A ∼= kC ∼= lC ∼= B for any k, l ≥ 1.
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The real work in proving these theorems is in the case when A and B are non-
splitting. The key point here is that the assumption of being non-splitting is a
much stronger rigidity hypothesis than it first appears, so much so that division of
linear orders over the isomorphism nA ∼= mB resembles division over an equation
nx = my in (R,+). More generally, the distinction between splitting and non-
splitting orders is a fundamental structural dichotomy that appears in many guises
in the study of linear orders. One expression of this dichotomy is the following
theorem.

Splitting dichotomy. (Tarski, Lindenbaum) Suppose that A is a linear order.
The following are equivalent:

i. For all nonzero n,m ∈ N, we have nA ∼= mA,
ii. For some n,m ∈ N with n < m, there is a convex embedding f : mA → nA.

A convex embedding is an order-preserving embedding whose image is an inter-
val. Isomorphisms are convex embeddings, and so the splitting dichotomy implies
in particular that once we have nA ∼= mA for some distinct n,m ∈ N, we have
nA ∼= mA for all n,m ∈ N. That is, for a given order A, the finite multiples of A
are either all pairwise isomorphic or pairwise non-isomorphic.

The theorem also implies that if A is non-splitting, then large finite multiples of
A can only be “compressed” (i.e. convexly embedded in themselves) very slightly:
if f : nA → nA is a convex embedding, we must have that the image f [nA]
intersects both the first and last copies of A in the sum nA. Otherwise f would
convexly embed nA in a copy of (n− 1)A, which would yield A ∼= 2A (i.e., that A
is splitting) by the splitting dichotomy. This suggests that if we pass to the Z-sum
ZA, any automorphism f : ZA → ZA must, modulo small local compressions and
expansions, behave like a rigid translation to the right or left.

This intuition can be made completely precise. We will show that when A is
non-splitting, there is a so-called Aut(ZA)-condensation of ZA (i.e. a method of
condensing certain “small” intervals in ZA to points in a way that respects the
automorphism group of ZA), that we label ∼bb, such that the action on the con-
densed order ZA/∼bb by the corresponding quotient Aut(ZA)/N is isomorphic, via
the Hölder-Conrad theorem, to an action by a group of translations of R. Divisi-
bility of segments in the condensed order can then be carried out just as in R. We
then show that we can pull back this divisibility to the original order ZA, and from
this picture deduce both the cancellation and division theorems. We carry out this
strategy in Section 4.

1.3. Structure theorems for Z-sums, and Holland’s dichotomy theorem.
The strategy described above for proving Lindenbaum’s theorems also yields our
structural characterization of Z-sums ZA in the case when A is non-splitting. In the
splitting case, we obtain a similar characterization using a different condensation.

More specifically, in the non-splitting case described above, we have by Hölder-
Conrad that the quotient Aut(ZA)/N can be linearly ordered as the subgroup
H ≤ (R,+) to which it is isomorphic. So ordered, its action on the condensed order
ZA/∼bb becomes an ordered action. It follows that the condensed order ZA/∼bb is
isomorphic to a union of cosets of H in R. Passing back to the original order by
uncondensing points, we obtain a representation of ZA as a replacement of R up to
the orbit equivalence relation of the subgroup H. We denote this representation as
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follows:

ZA ∼= R(I[bb(x)]).
From this representation, we obtain a representation of the segment A as a re-
placement of an interval of R. Likewise, if B is an order such that ZB ∼= ZA (for
instance, if nA ∼= mB for some n,m ∈ N), we can, from this representation of ZA,
read off a representation of B.

A very similar strategy, which we carry out in Section 6, yields a proof of Aron-
szajn’s commuting pairs theorem.

Though it is not needed to prove Lindenbaum’s theorems, we can find an anal-
ogous representation of ZA in the case when A is splitting. To do this, we show
that even though the action of Aut(ZA) is much wilder in the splitting case, there
is a condensation of ZA that is analogous, in the sense of being primitive, to the
condensation ∼bb in the non-splitting case.

A condensation of ZA is called primitive if it respects the action of Aut(ZA), and
any larger condensation that respects this action condenses ZA to a point. When A
is non-splitting, the condensation ∼bb is primitive. The fact that A is non-splitting
is reflected in a geometric rigidity property of the quotient action Aut(ZA)/N on the
condensed order ZA/∼bb. Namely, this action is uniquely transitive on its orbits:
if x, y ∈ ZA/∼bb belong to the same orbit of this action, then there is a unique
h ∈ Aut(ZA)/N such that hx = y. If, by way of the representation described
above, we view x and y as points in R in the same coset of H, then h is simply the
translation by the difference y − x.

We will show that there is also a primitive condensation on ZA in the splitting
case, that we label ∼s. In this case, we will show that A being splitting is reflected
by a strong non-rigidity property of the action on the condensed order ZA/∼s by
the corresponding quotient Aut(ZA)/N . Namely, this action is doubly transitive
on its orbits. That is, for any two pairs of points x < y and u < v from the same
orbit of this action, there is h ∈ Aut(ZA)/N such that hx = u and hy = v.

As in the non-splitting case, we can view the condensed order ZA/∼s as a sub-
order of a complete order R on which Aut(ZA)/N acts doubly transitively on its
orbits. We then get a representation of the original order ZA as a replacement of
R up to the orbit equivalence relation of this action. We write:

ZA ∼= R(I[s(x)]).

From this, we obtain a representation of A as a replacement of an interval of R, as
well as a representation of any B for which ZB ∼= ZA.

The study of primitive group actions G ↷ X on linear orders was initiated by
Holland, and substantially developed by McCleary. The dichotomy between unique
transitivity and double transitivity for the orbits of such actions was discovered by
Holland, and our theorem can be viewed as a generalization for Z-sums of the
following theorem (whose terminology will be defined in Section 5).

Holland’s dichotomy theorem. (Holland) Suppose that X is a linear order
and Aut(X) acts primitively on X. Then exactly one of the following holds:

i. X is uniquely transitively derived,
ii. X is doubly transitively derived.

From our arithmetic perspective, Holland’s dichotomy theorem is another expres-
sion of the strong structural distinction between splitting and non-splitting orders.
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We will establish our structure theorems for Z-sums described above in Section 5,
and in that section also show how to derive Holland’s theorem from our work.

1.4. Organization of the paper. This paper is organized as follows.
In Section 2, we give the general background on linear orders that we will need

throughout the paper.
In Section 3, we present and prove several of the basic arithmetic propositions

for (LO,+) listed in Lindenbaum and Tarski’s paper [7], and give a number of
examples to illustrate these propositions as well as some of the difficulties that
arise in proving the cancellation and division theorems. We also give a precise
statement of Aronszajn’s commuting pairs theorem.

In Section 4, we develop the theory of group actions on linear orders, define G-
condensations, introduce and study the bubble condensation ∼b that we use in our
proofs of Lindenbaum’s theorems, and state Hölder and Conrad’s characterization of
the Archimedean orderable groups. We then use our work to prove the cancellation
and division theorems. These theorems are due to Lindenbaum, but the proofs here
are new and quite different from those in Tarski’s book [11].

In Section 5, we develop the theory of primitive group actions on linear orders,
define the primitive condensations ∼bb and ∼s, and use these condensations to
prove our structure theorems for Z-sums ZA for both splitting and non-splitting
orders A.

In Section 6, we adapt the methods of Section 4 to give a new proof Aronszajn’s
commuting pairs theorem. Using our structure theory from Section 5, we then
generalize Aronszajn’s theorem to get a bona fide classification of the additively
commuting pairs of orders.

In Section 7, we generalize the work of Sections 4 and 5 to semigroups acting by
convex self-embeddings on ω-sums ωA and reverse ω-sums ω∗A. We give structure
theorems for such actions, and prove several new identities related to isomorphisms
of the forms ZA ∼= ZB, ωA ∼= ωB, and ω∗A ∼= ω∗B.

Aside from omitting a proof of the Hölder-Conrad theorem, the paper is essen-
tially self-contained. Glass’s book [4] is a general reference for group actions on
linear orders, and also contains a thorough development of Holland and McCleary’s
results on primitive actions.

2. Background on linear orders

2.1. Basic terminology. A linear order (or simply order) is a set X equipped
with an irreflexive, transitive, and total binary relation < on X. We denote the
class of linear orders by LO. Given a linear order X and points x, y ∈ X, we write
x ≤ y to abbreviate “x < y or x = y.” A suborder of a linear order X is a subset
Y ⊆ X equipped with the inherited order relation from X.

A linear order X has a left endpoint if there is a point x ∈ X such that x ≤ y
for all y ∈ X, and a right endpoint if there is x ∈ X such that y ≤ x for all y ∈ X.

A suborder I of an order X is an interval or convex subset of X if for all
x, y, z ∈ X, if x < z < y and x, y ∈ I, then z ∈ I. Singletons are intervals, as
is X itself. An interval is open if it has neither a left nor right endpoint, half
open if it has an endpoint on exactly one side, and closed if it has an endpoint
on both sides. Given x, y ∈ X with x ≤ y, we write [x, y] for the closed interval
{z ∈ X : x ≤ z ≤ y}. We write [x, y), (x, y], and (x, y) for the intervals [x, y] \ {y},
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[x, y]\{x}, and [x, y]\{x, y}, respectively. For an arbitrary pair of points x, y ∈ X,
[{x, y}] denotes the interval [x, y] when x ≤ y and the interval [y, x] when y < x.

An initial segment of a linear order X is an interval I ⊆ X such that for all
x ∈ X, if there is y ∈ I such that x ≤ y then x ∈ I. An interval J ⊆ X is a
final segment if X \ J is an initial segment of X. An interval that is neither an
initial segment nor final segment is a middle segment. For a fixed x ∈ X, we write
(−∞, x] for the initial segment {z ∈ X : z ≤ x} and (x,∞) for the corresponding
final segment X \ (−∞, x]; (−∞, x) and [x,∞) are defined symmetrically.

If I and J are intervals of an order X, we write I < J if for every x ∈ I and
y ∈ J we have x < y. This defines a partial order on the collection of intervals of
X that we call the induced order. If I = {z} is a singleton, we also write z < J
instead of {z} < J .

An embedding from a linear order X to a linear order Y is a map f : X → Y such
that for all x, y ∈ X, if x < y then f(x) < f(y). Embeddings are automatically
injective. An embedding is an isomorphism if it is surjective. We say X and Y are
isomorphic if there is an isomorphism f : X → Y . We write X ⩽ Y if there is an
embedding from X to Y , and X ∼= Y if there is an isomorphism from X to Y . An
automorphism of X is an isomorphism f : X → X. If f and g are automorphisms
of X, we write gf for the composition g ◦ f . For n ∈ N, we write fn for the n-fold
composition ff · · · f .

An order type is an isomorphism class of linear orders: two linear orders X and
Y have the same order type if and only if X ∼= Y . Though we will work throughout
with specific linear orders as opposed to order types, typically we are interested in
a given linear order X only up to isomorphism, and most of the definitions and
theorems we present could be rephrased in terms of order types.

Given an embedding f : X → Y , we write f [X] for the image of X under f .
We always have X ∼= f [X]. The embedding f is convex if f [X] is an interval of
Y . In particular, isomorphisms are convex. We write X ⩽c Y if there is a convex
embedding of X into Y .

We use both ω and N to denote the set of natural numbers {0, 1, 2, . . .} equipped
with its usual order relation. We identify each n ∈ ω with the set of its predecessors
{0, 1, . . . , n− 1}, and view n as a suborder of ω. In particular, 0 denotes the empty
order. Any finite linear order X of cardinality n is isomorphic to n. We use
Z,Q, and R to denote the sets of integers, rational numbers, and real numbers
respectively, equipped with their usual order relations.

Given a linear order X, we write X∗ for the reverse order: X and X∗ share the
same underlying set of points, but we have x < y in X∗ if and only if y < x in X.
Note that X∗∗ = X.

A linear order X is dense (or dense as a linear order) if X contains at least
two points and whenever x, y ∈ X and x < y, there is z ∈ X with x < z < y. A
suborder Y ⊆ X is dense in X (we also say Y is a dense suborder of X) if whenever
x, y ∈ X and x < y, then either both x and y belong to Y or there is z ∈ Y such
that x < z < y.

2.2. Cuts and completions. A cut in a linear order X is a pair c = (I, J), where
I is an initial segment of X and J = X \ I is the corresponding final segment. We
think of c as the space between the segments I and J . We say c is a gap if I does
not have a right endpoint and J does not have a left endpoint, and a jump if I has
a right endpoint and J has a left endpoint.
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Notice that X is dense if and only if X does not contain a jump. The cuts (X, ∅)
and (∅, X) are the cut at the right of X and cut at the left of X, respectively. The
cut at the left of X is a gap when X does not have a left endpoint, and the cut
at the right is a gap when X does not have a right endpoint. We sometimes call
a cut c = (I, J) with both I and J non-empty a middle cut to distinguish it from
the cuts at the left and right.

We often treat cuts, especially gaps, like points themselves. Given a linear order
X, as well as a point x ∈ X and a cut c = (I, J) in X, we write x < c if x ∈ I
and c < x if x ∈ J . If c′ = (I ′, J ′) is another cut in X, we write c < c′ if I ⊊ I ′,
or equivalently if there is x ∈ X such that c < x < c′. If K ⊆ X is an interval, we
write c ∈ K if there are points x, y ∈ K with x < c < y.

It is straightforward to verify that if C is any collection of cuts in an order X
and we extend the order relation of X to X ∪ C as above, then X ∪ C becomes
a linear order. If C is the collection of all middle gaps in X, we call X ∪ C the
completion of X and denote it by X. It can be checked that X is always a dense
suborder of X.

Intuitively, the completion X is obtained by filling every gap in X with a single
point. It is our convention that if either of the cuts at the right or left of X are
gaps, then we do not fill these gaps when passing to the completion.

An order X determines its completion up to isomorphism. More precisely, if
X ∼= X ′ as witnessed by an isomorphism f : X → X ′, then we may extend f to a
map f : X → X ′ by defining f(c) = c′ whenever c = (I, J) is a middle gap in X and
c′ = (f [I], f [J ]) is the corresponding gap in X ′. So extended, f is an isomorphism
of X with X ′.

A linear order X is complete if X has no gaps, except perhaps at the left or
right. Equivalently, X is complete if whenever (I, J) is a middle cut in X, then
either I has a right endpoint or J has a left endpoint. For any linear order X, its
completion X is complete, and we have X = X if and only if X is complete.

Suppose X is a complete linear order, and Y is a dense suborder of X that
includes any endpoints of X. Then Y is isomorphic to X, and becomes equal to
X if whenever c = (I, J) is a gap in Y , we identify c with the point from X that
sits in this gap, that is, the unique x ∈ X such that {y ∈ Y : y < x} = I. We
make this identification. If Y ′ is another dense suborder of X and f : Y → Y ′

is an isomorphism, then f can be extended to an automorphism of X by defining
f(x) = x′ whenever x is the point from X filling a gap (I, J) in Y and x′ is the
point filling the corresponding gap (f [I], f [J ]) in Y ′. Since any automorphism of X
must fix the endpoints of X anyway, we can extend an isomorphism between two
dense suborders in this way even if we do not assume that these suborders contain
any endpoints of X. We express this by saying that any isomorphism between two
dense suborders of a complete linear order X determines an automorphism of X.

2.3. Replacements, sums, and products. In this section we formally define the
sum of two linear orders as an instance of a more general replacement operation.

Suppose that X is a linear order, and for every point x ∈ X we fix an order Ix.
The replacement of X by the orders Ix is the order obtained by replacing each point
x ∈ X with a copy of Ix. We denote the replacement by X(Ix). More formally, we
define X(Ix) to be the set of pairs {(x, i) : x ∈ X, i ∈ Ix}, ordered lexicographically
by the rule (x, i) < (y, j) if x < y (in X), or x = y and i < j (in Ix = Iy). For
a fixed x ∈ X, the set of pairs {(x, i) ∈ X(Ix) : i ∈ Ix} is an interval in X(Ix)
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that is isomorphic to Ix. We sometimes informally refer to this interval also by Ix.
Observe that Ix < Iy in X(Ix) if and only if x < y in X.

Given a replacement X(Ix) and a suborder K of X, we write K(Ix) for the
restriction of X(Ix) to K. That is, K(Ix) = {(x, i) ∈ X(Ix) : x ∈ K}.

We emphasize that in a replacement X(Ix) we allow the replacing orders Ix to
be empty. Thus we have X(Ix) = K(Ix), where K = {x ∈ X : Ix ̸= ∅} is the
suborder of X consisting of points replaced by non-empty orders.

It will be useful to define a slightly more general notion of replacement up to
an equivalence relation on the replaced order. Suppose that E is an equivalence
relation on X. (In practice, E will often be the orbit equivalence relation of a group
of automorphisms of X.) For a given x ∈ X, denote the E-equivalence class of x
by [x]E . When E is clear from context, we also write [x] for [x]E . Suppose that
for each E-class [x] we fix an order I[x]. Let X(I[x]) denote the replacement X(Ix)
in which Ix = I[x] for every x ∈ X. This is the order obtained by replacing every
x ∈ X from a given E-class [x] by the same order I[x]. Said another way, for every
x, y ∈ X, we have xEy implies Ix = Iy = I[x] = I[y]. We call a replacement of the
form X(I[x]) a replacement of X up to E. Sometimes we will be informal and call
a replacement X(Ix) a replacement up to E, and denote it by X(I[x]), even if we
only have xEy ⇒ Ix ∼= Iy for all x, y ∈ X.

A replacement X(Ix) is sometimes called an ordered sum and denoted
∑

x∈X Ix.
We will usually use the replacement notation X(Ix), however for certain orders X
we will sometimes use sum notation instead. Specifically, when X = 2 = {0, 1}, we
call the replacement X(Ix) the sum of the orders I0 and I1 and denote it by I0+I1.
The sum I0 + I1 is characterized up to isomorphism as the order with an initial
segment isomorphic to I0 whose corresponding final segment is isomorphic to I1.
Similarly, when X = n = {0, 1, . . . , n − 1}, we write X(Ix) as I0 + I1 + . . . + In−1

and call such a replacement an n-sum.
Sums are closely related to cuts. If c = (I, J) is a cut in an order X, then

X ∼= I + J . In the other direction, in an order of the form I0 + I1 there is a cut
between the initial segment corresponding to I0 and final segment corresponding
to I1. We call this cut the cut at the + sign.

Given orders I0, I1, and I2, while it is true that no two of the sums (I0+I1)+I2,
I0 +(I1 + I2), and I0 + I1 + I2 are equal, they are all isomorphic. For our purposes
it will usually be irrelevant to distinguish between such expressions. The same goes
for longer n-sums.

More generally, we have the associative law X(Ix)(J(x,i)) ∼= X(Ix(J(x,i))). That
is, if we first replace the points in an order X(Ix) by orders J(x,i), then the resulting
order X(Ix)(J(x,i)) is isomorphic to the order obtained by first forming the replace-
ments Ix(J(x,i)) for each x ∈ X, and then forming the replacement X(Ix(J(x,i))).

When X is infinite, we will use sum notation for replacements of X specifically
when X is one of ω, ω∗, or Z. That is, we may write I0 + I1 + · · · for ω(Ix),
· · · + I1 + I0 for ω∗(Ix), and · · · + I−1 + I0 + I1 + · · · for Z(Ix). We call such
replacements ω-sums, ω∗-sums, and Z-sums, respectively.

If there is an order Y such that for all x ∈ X we have Ix = Y , then we denote
the replacement X(Ix) by XY and call this replacement the lexicographic product
of X and Y . Though we are primarily interested in sums (as opposed to products)
of linear orders, products XY in which the order X is finite, or isomorphic to one
ω, ω∗, or Z, naturally arise when studying sums. For now, we simply observe that



11

for a given order Y , the sum Y +Y coincides with the product 2Y , Y +Y +Y with
3Y , and so on.

Products distribute over sums on the right in the sense that for all orders A,B,
and X we have (A + B)X ∼= AX + BX. More generally, products distribute over
replacements on the right: given a replacement X(Ix) and an order A, we have
X(Ix)A ∼= X(IxA). This follows from the general associativity law for replacements
given above. Products do not in general distribute over replacements (or sums) on
the left.

It will be helpful to adopt some informal conventions when working with sums.
Given orders A and B, when we write A+B then strictly speaking we are referring
to the replacement I0 + I1 = 2(Ix) where I0 = A and I1 = B. The orders A and B
are not literally subsets of A+B, but we will often treat them as such when there
is no danger of confusion, especially when working with embeddings of A+B. For
example, given an embedding f : A+B → C, we will often write f [A] to denote the
image of the initial segment of A+B corresponding to A, and likewise f [B] for the
image of the final segment corresponding to B. This convention leads to confusion
when dealing with sums of the form A + A. In this case, given an embedding
f : A + A → C, we will rewrite A + A as A0 + A1, and write f [A0] and f [A1] for
the images of the left and right copies of A in the sum A+A, respectively.

More generally, given a replacement X(Ix) and a fixed x ∈ X, we will often
identify the replacing order Ix with the interval {(x, i) : i ∈ Ix} in X(Ix) to which
it corresponds. Given an embedding f : X(Ix) → Y , we will write f [Ix] for the
image of this interval when there is no danger of confusion. When there is such
danger, that is, when for distinct points x, y ∈ X we have Ix = Iy = A, we will
instead write Ax and Ay for the copies of A replacing x and y respectively, and
f [Ax], f [Ay] for their images.

2.4. Condensations. Inverse to the notion of a replacement is the notion of a
condensation. Given a linear order X, an equivalence relation ∼ on X is called
a convex equivalence relation, or condensation, if every ∼-equivalence class is an
interval of X. Though both are types of equivalence relations, we will usually use
the symbol ∼ for condensations, and the letter E for orbit equivalence relations.
Also for condensations, we will write c∼(x) or simply c(x) (instead of [x]∼, or
[x]), for the ∼-equivalence class of a given x ∈ X. We write X/∼ for the set of
condensation classes, and think of c as a map c : X → X/∼ that we call the
condensation map.

Since X/∼ is a collection of pairwise disjoint intervals in X, the induced order on
these intervals turns X/∼ into a linear order. The induced order can alternatively
be defined on X/∼ by the rule c(x) < c(y) if c(x) ̸= c(y) and x < y in X. Once X/∼
is equipped with this order, we can view the condensation map c : X → X/∼ as a
surjective order-homomorphism of X onto X/∼, that is, a surjective map satisfying
x < y ⇒ c(x) ≤ c(y).

If we replace each point c(x) ∈ X/∼ by the interval c(x) ⊆ X, then we recover
the original order X (up to isomorphism). Said another way, if for every conden-
sation class c(x) (viewed as a point in X/∼) we let Ic(x) denote c(x) (viewed as a
convex suborder of X), then the replacement X/∼(Ic(x)) is isomorphic to X. The
isomorphism is given by the map ι : X → X/∼(Ic(x)) defined by ι(x) = (c(x), x).
We can think of the pair (c(x), x) as “enriched coordinates” for x that specify both
x’s location in the condensed order X/∼ (i.e., within the condensed interval c(x)),
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as well as x’s location within that interval (namely, at x). We also write X/∼(Ic(x))
simply as X/∼(c(x)), so that X ∼= X/∼(c(x)). In this sense, replacement is inverse
to condensation.

In the other direction, if X(Ix) is any replacement of X, we may define a convex
equivalence relation ∼ on X by the rule (x, i) ∼ (y, j) if x = y. This equivalence
relation condenses each of the replacing orders Ix to a point, so that we have
X(Ix)/∼ ∼= X. In this sense, condensation is inverse to replacement.

2.5. Q and R. The linear orders Q and R will play central roles in our results
about (LO,+) and also serve as sources of examples. To build these examples
we will need the following well-known theorem of Cantor that characterizes these
orders up to isomorphism.

Theorem 2.5.1. (Cantor)

1. If Q is a countable and dense linear order without endpoints, then Q ∼= Q.
2. If R is a dense and complete linear order without endpoints, and there is a

countable suborder Q ⊆ R that is dense in R, then R ∼= R.

It follows from (1.) that there are exactly four countable and dense linear orders
up to isomorphism, namely Q, 1+Q,Q+1, and 1+Q+1. Since every non-singleton
interval I in Q is countable and dense, every such I is isomorphic to exactly one
of these four orders, depending on its endpoint configuration. In particular, every
open interval I ⊆ Q is isomorphic to Q.

Similarly, from (2.) we get that R, 1+R,R+1, and 1+R+1 are the only dense and
complete linear orders with countable dense suborders, up to isomorphism. Every
non-singleton interval in R has exactly one of these four types, and in particular
every open interval I ⊆ R is isomorphic to R.

2.6. Scattered orders. We recall the definition of a scattered linear order as well
as some basic facts such orders. Although these facts will not be needed for our
arithmetic results, they will be useful for constructing examples.

A linear order X is scattered if X does not contain a suborder Y ⊆ X which
is dense as a linear order. Since any dense linear order Y contains a countable
suborder Y ′ that is also dense as a linear order, it follows from Cantor’s theorem
that X is scattered if and only if X does not embed Q.

All finite orders are scattered, as are ω, ω∗, and Z. Scattered orders are closed
under replacement. That is, if X is scattered, and for every x ∈ X we fix a scattered
order Ix, then X(Ix) is scattered. In particular, sums and products of scattered
orders are scattered.

The main fact we will need when constructing examples involving scattered or-
ders is the following.

Proposition 2.6.1. Suppose that X and Y are dense linear orders, and for every
x ∈ X and y ∈ Y we fix scattered orders Ix and Jy. If X(Ix) ∼= Y (Jy), then X ∼= Y .

Proof. Suppose f : X(Ix) → Y (Jy) is an isomorphism. Fix a point x ∈ X, and let
y ∈ Y be a point such that f [Ix] ∩ Jy ̸= ∅. We claim that f [Ix] ⊆ Jy. If not, there
is z ̸= y such that f [Ix]∩Jz ̸= ∅. Assume y < z; the case when z < y is symmetric.
Since f [Ix] intersects both Jy and Jz, it follows that for every c ∈ Y in the open
interval (y, z), we have Jc ⊆ f [Ix]. Since Y is dense, so is the open interval (y, z).
By picking a single point in each of the intervals Jc, y < c < z, we find a suborder
of f [Ix] which is dense, a contradiction, as f [Ix] ∼= Ix and Ix is scattered.
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Thus f [Ix] ⊆ Jy as claimed. Since f−1[Jy] ∩ Ix ̸= ∅, a symmetric argument
shows that f−1[Jy] ⊆ Ix, which gives f [Ix] = Jy. Since x was arbitrary, it follows
that f induces an isomorphism from X to Y , namely the map F : X → Y defined
by F (x) = y if f [Ix] = Jy. □

3. Examples and basic arithmetic: absorbing, splitting, commuting

3.1. Absorption and additive cancellation.

Definition 3.1.1. Suppose that X is a linear order.

1. Fix a linear order A. We say that X absorbs A on the left if A+X ∼= X,
and that X absorbs A on the right if X +A ∼= X.

If A+X ∼= X +A ∼= X, then X bi-absorbs A.
2. We say that X is additively left absorbing if there is a non-empty order

A such that A + X ∼= X, and X is additively right absorbing if there is a
non-empty A such that X +A ∼= X.

Examples 3.1.2.

i. For any order X we have 0 +X ∼= X + 0 ∼= X. That is, the empty order is
bi-absorbed by every order X.

ii. Since 1 + ω ∼= 1 + (1 + 1 + 1 + . . .) ∼= ω, we have that ω absorbs 1 on the
left. More generally, if R is an arbitrary linear order, then ω+R absorbs 1
on the left since 1 + (ω +R) ∼= (1 + ω) +R ∼= ω +R.

iii. Symmetrically, any order of the form L+ ω∗ absorbs 1 on the right.
iv. Combining (ii.) and (iii.), we have that any order of the form ω +M + ω∗

bi-absorbs 1.
v. For an arbitrary linear order A, we have that A + ωA ∼= (1 + ω)A ∼= ωA.

Thus ωA absorbs A on the left. More generally, for an arbitrary order R,
the order ωA+R absorbs A on the left.

Symmetrically, any order of the form L + ω∗A absorbs A on the right,
and it follows that any order of the form ωA+M + ω∗A bi-absorbs A.

The following simple proposition reformulates the definitions of left absorbing
and right absorbing in terms of convex embeddings.

Proposition 3.1.3.

1. An order X is left absorbing if and only if there is a convex embedding
f : X → X that maps X onto a strict final segment of X.

2. An order X is right absorbing if and only if there is a convex embedding
f : X → X that maps X onto a strict initial segment of X.

Proof. We prove (1.). If A+X ∼= X for some order A ̸∼= 0, and f : A+X → X is an
isomorphism, then any isomorphism g : X → f [X] may be viewed as an embedding
of X onto its final segment f [X].

Conversely, if f : X → X is an embedding of f onto a strict final segment of
itself and we let A = X \ f [X] be the corresponding initial segment, then A is
non-empty and we have X ∼= A+X. □

The proof of the proposition shows that A is absorbed by X on the left if and
only if there is an embedding f : X → X onto a final segment f [X] such that
X \ f [X] ∼= A.

We can use the proposition to show that certain orders are not absorbing.
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Example 3.1.4. Z is neither left nor right absorbing.

Proof. If I ⊆ Z is an interval and I ∼= Z then I = Z. Thus there are no convex
embeddings of Z onto either a strict initial or strict final segment of itself. □

Example 3.1.2.v actually gives the general form of the orders X that absorb a
given order A on either the left and right.

Proposition 3.1.5. Suppose that X and A are linear orders.

1. X absorbs A on the left if and only if X ∼= ωA+R for some order R.
2. X absorbs A on the right if and only if X ∼= L+ ω∗A for some order L.

Proof. We prove (1.). It remains to show the forward implication. Suppose f :
A + X → X is an isomorphism. Denote f [A] by A0 and f [X] by X0. For the
remainder of the proof, we identify f with its restriction to the final segment of
A +X corresponding to X, and view f as a convex self-embedding of X onto its
final segment X0.

Inductively define An+1 = f [An] and Xn+1 = f [Xn]. Since A0 is an initial
segment of X (isomorphic to A) with corresponding final segment X0 (isomorphic
to X), it follows inductively that An+1 is an initial segment of Xn (isomorphic to
A) with corresponding final segment Xn+1 (isomorphic to X). Thus, for every n
we have the isomorphism X ∼= A0 + A1 + · · · + An + Xn. It follows that X ∼=
A0 + A1 + · · · + R, where R =

⋂
n∈ω Xn. Since each term An is isomorphic to A,

this gives X ∼= ωA+R, as desired. □

Iterating a convex embedding f : X → X as in the proof of the proposition is a
frequently useful technique.

It also holds that X bi-absorbs A if and only if X has the form ωA+M + ω∗A,
but this requires a more complicated argument.

Absorption is closely connected with additive cancellation.

Definition 3.1.6. Suppose that X is a linear order.

1. X is additively right cancelling if for all orders A and B we have A+X ∼=
B +X ⇒ A ∼= B.

2. X is additively left cancelling if for all orders A and B we have X + A ∼=
X +B ⇒ A ∼= B.

When there is no danger of confusion we will sometimes drop the “additively”
and simply say right cancelling and left cancelling.

If X is left absorbing then X is not right cancelling since for some A ̸∼= 0 we have
A+X ∼= 0 +X. Similarly, if X is right absorbing then X is not left cancelling.

It turns out that absorption on one side is the only barrier to cancellation on
the other.

Theorem 3.1.7. Suppose that X is a linear order.

1. X is right cancelling if and only if X is not left absorbing.
2. X is left cancelling if and only if X is not right absorbing.

Proof. It suffices to prove the backward implication in (1.). Suppose that X is
not right cancelling. Then we can find non-isomorphic orders A and B and an
isomorphism f : A +X → B +X. Since A ̸∼= B, it must be that either f [A] is a
strict initial segment of B, or that B is a strict initial segment of f [A]. Suppose we
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are in the former case; the latter is symmetric. Let R = B \ f [A]. By assumption,
R ̸∼= 0 and we have f [X] = R+X, giving R+X ∼= X. □

For example, since Z is non-absorbing on both sides, it is cancelling on both sides:
for any orders A and B, if we have that either A+ Z ∼= B + Z or Z+ A ∼= Z+ B,
then we must have A ∼= B.

3.2. Splitting.

Definition 3.2.1. A linear order X is splitting if X ∼= 2X.

Splitting is a strong form of additive absorption: if X ∼= X +X, then X absorbs
itself on both the left and right. Splitting can also be viewed as an instance of
multiplicative absorption: a splitting order X ∼= 2X absorbs 2 multiplicatively on
the left. Observe that if X is splitting, then mX ∼= nX for any nonzero m,n ∈ N.

It turns out that splitting versus non-splitting is an important dichotomy in the
study of the arithmetic of (LO,+). Many of our results will case out on whether
the orders involved are splitting or non-splitting.

Examples 3.2.2.

i. If we add Q to itself, the resulting sum Q + Q remains countable, dense,
and without endpoints, so that Q + Q ∼= Q by Cantor’s theorem. Thus Q
is splitting.

ii. Similarly, (1+Q)+(1+Q) is a countable and dense linear order with a left
endpoint but no right endpoint, so that (1 + Q) + (1 + Q) ∼= 1 + Q. Thus
1 +Q is also splitting. Symmetrically, Q+ 1 is splitting.

iii. In contrast, 1 +Q+ 1 is not splitting. The sum (1 +Q+ 1) + (1 +Q+ 1)
is not dense since it has a jump at the + sign between the two middle 1s.
It follows that the sum is not isomorphic to 1 +Q+ 1.

iv. R is not splitting since R + R has a gap at the + sign, whereas R has no
gaps (except at the left and right).

v. On the other hand, 1 + R is splitting: (1 + R) + (1 + R) does not have a
gap (except at the right), and it follows from Cantor’s characterization of
R that this sum is isomorphic to 1 + R. Symmetrically R+ 1 is splitting.

However 1 + R+ 1 is not splitting, since 2(1 + R+ 1) is not dense.
vi. It is possible to show that if X is splitting then X contains a suborder

which is dense as a linear order. That is, splitting orders are non-scattered.
This follows from a slightly more general result established independently
by Morel [10] and Ginsburg [3], who showed that if X +X ⩽ X then X is
non-scattered.

In particular, any finite order n is non-splitting, as are ω, ω∗, and Z.

We conclude this subsection with several results about orders X that satisfy
certain additive identities. These can also be viewed as results about convex self-
embeddings of linear orders. Corollary 3.2.6 below will be frequently used to check
whether a given order X is splitting. All of these results are due to Lindenbaum.

Proposition 3.2.3. Suppose that A,B, andX are linear orders. IfX ∼= A+X+B,
then X ∼= A+X and X ∼= X +B.

Proof. Fix an isomorphism f : A +X + B → X. Let A0 = f [A], X0 = f [X], and
B0 = f [B]. By restricting f to the middle segment X in the sum A +X + B, we
view f as a convex self-embedding of X onto the interval X0.
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Inductively define An+1 = f [An], Xn+1 = f [Xn], and Bn+1 = f [Bn]. By
induction, we have for all n that An+1 is initial in Xn and Bn+1 is final in
Xn so that Xn

∼= An+1 + Xn+1 + Bn+1. We thus obtain the decomposition
X ∼= A0 + A1 + · · · + M + · · · + B1 + B0, where M =

⋂
n∈ω Xn. This yields

X ∼= ωA + M + ω∗B. By Proposition 3.1.5, it follows X absorbs B on the right
and A on the left, which gives X ∼= A+X and X ∼= X +B. □

The proposition says that if X is isomorphic to a middle segment of itself, then
X is also isomorphic to the initial and final segments of itself obtained by closing
this middle segment to the left and right, respectively.

Corollary 3.2.4. Suppose that X and Y are linear orders. If X is isomorphic to
an initial segment of Y and Y is isomorphic to a final segment of X, then X ∼= Y .

Proof. They hypotheses give that Y ∼= A +X and X ∼= Y + B for some orders A
and B. Combining these isomorphisms gives X ∼= A + X + B. By the previous
proposition we have X ∼= A+X, that is X ∼= Y . □

Corollary 3.2.4 can be viewed as a Cantor-Schroeder-Bernstein style theorem for
linear orders. While it is not true in general that bi-embeddable linear orders are
isomorphic, the corollary says that we do get isomorphism if one of the embeddings
is onto an initial segment and the other is onto a final segment.

Corollary 3.2.5. Suppose that A,B,C, and X are linear orders. If X ∼= A +
X + C +X +B, then X ∼= X + C +X.

Proof. Since X ∼= (A+X +C) +X +B, we have by Proposition 3.2.3 (applied to
the left) that X ∼= A+X +C+X = A+X +(C+X). Applying Proposition 3.2.3
again (now to the right), we obtain X ∼= X + C +X. □

The corollary says that if X contains two separate convex copies of itself, then
X is isomorphic to the interval spanned by the two copies.

The following proposition says that to see that a given order X is splitting, it
suffices to find a convex embedding of 2X into X.

Corollary 3.2.6. Suppose X is a linear order. Then 2X ∼= X if and only if
2X ⩽c X.

Proof. Since isomorphisms are convex embeddings, it suffices to check the backward
implication. Suppose f : 2X → X is a convex embedding. Let A denote the initial
segment of X preceding the image f [2X], and let B denote the final segment of X
succeeding this image. Then X ∼= A+ f [2X] +B ∼= A+2X +B ∼= A+X +X +B.
Applying Corollary 3.2.5 yields X ∼= X +X. □

Corollary 3.2.6 is surprisingly useful: we will use it frequently to verify that a
given order X is splitting.

Here is one application. The following theorem says that splitting versus non-
splitting is a stronger dichotomy than it first appears: for every order X we either
have that all of its finite multiples are isomorphic (splitting) or all of its finite
multiples are distinct (non-splitting).

Theorem 3.2.7. (Additive dichotomy theorem) Suppose X is a linear order.
Then exactly one of the following holds:

i. For all m,n ∈ N with m ̸= n we have mX ̸∼= nX,
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ii. For all nonzero m,n ∈ N we have mX ∼= nX.

Proof. Suppose mX ∼= nX for some m,n ∈ N with m ̸= n. We prove X ∼= 2X,
which suffices to prove the theorem.

We may assume m < n. Then n = k + m for some k ≥ 1. Thus we have
mX ∼= (k + m)X ∼= kX + mX. By Proposition 3.1.5, we have mX ∼= ωkX + R
for some linear order R. But ωkX ∼= ωX, so this gives mX ∼= ωX + R. Let
f : ωX + R → mX be an isomorphism, and consider the image f [ωX], which is a
convex copy of ωX inmX. WritingmX = X1+X2+· · ·+Xm, let l ≤ m be maximal
such that f [ωX]∩Xl ̸= ∅. Then Xl contains a final segment of f [ωX]. Since every
nonempty final segment of ωX contains a final segment which is isomorphic to ωX,
we have that ωX ⩽c Xl, and hence ωX ⩽c X. It follows 2X ⩽c X, so that by
Corollary 3.2.6 we have X ∼= 2X, as claimed. □

3.3. Cancellation and division. In this section we recall Lindenbaum’s cancel-
lation and division theorems, and give examples to illustrate the theorems as well
as some of the issues that arise in proving them.

Theorem 3.3.1. (Lindenbaum’s cancellation theorem) Suppose that n is a nonzero
natural number and A and B are linear orders. If nA ∼= nB, then A ∼= B.

We note that the term “cancellation” here refers to multiplicative cancellation
(by a finite order on the left), as opposed to the additive cancellation of linear
orders discussed above.

Theorem 3.3.2. (Lindenbaum’s division theorem) Suppose that n and m are
nonzero natural numbers with gcd (n,m) = 1, and A and B are linear orders. If
nA ∼= mB, then there is a linear order C such that A ∼= mC and B ∼= nC.

We first consider the cancellation theorem. Suppose nA ∼= nB and f : nA → nB
is a fixed isomorphism. Let us expand the expressions nA and nB, labelling both
the individual copies of A and B as well as the cuts at the + signs between them.
We write nA = A0 +1 A1 +2 · · ·+n−1 An−1 and nB = B0 +

1 B1 +
2 · · ·+n−1 Bn−1.

Naively, one might attempt in this case to prove cancellation by showing that the
isomorphism f is forced to map each summand Ai onto the corresponding Bi (or
equivalently, each cut +i onto +i), and thereby directly witness A ∼= B. While this
holds when A and B are finite, it does not hold in general.

Example 3.3.3. Suppose A = Z and B is a linear order such that 3B ∼= 3Z. By
the cancellation theorem we have B ∼= Z. Moreover, in this case we do have that
if f : Z0 + Z1 + Z2 → B0 + B1 + B2 is any isomorphism, then in fact f [Zi] = Bi

for all i ≤ 2. Working from the left, if f [Z0] were a strict initial segment of B0 or
if f−1[B0] were a strict initial segment of Z0, then we would have a strict initial
segment of Z isomorphic to Z. There is no such segment. Thus f [Z0] = B0 and the
claim follows by induction.

If we identify A and B in the example above with Z, we may view f as an
automorphism f : 3Z → 3Z. While f may be nontrivial, by essentially the same
argument as in the example f must restrict to an automorphism of each copy of Z,
and in particular f must fix each copy of Z setwise. Explicitly, for each i ∈ {0, 1, 2},
there must bemi ∈ Z such that for all points (i, z) ∈ Zi we have f(i, z) = (i, z+mi).
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Example 3.3.4. Suppose A = ω+ω∗. Labelling cuts, we write 3A = (ω+ω∗)+1

(ω + ω∗) +2 (ω + ω∗) ∼= ω + (ω∗ +1 ω) + (ω∗ +2 ω) + ω∗ ∼= ω + Z + Z + ω∗. The
cuts +1 and +2 fall in the midst of the copies of Z in this expression, and since Z
has nontrivial automorphisms, there are automorphisms f : 3A → 3A that move
these cuts. Said another way, there are automorphisms f : 3A → 3A for which
f [Ai] ̸= Ai for some or even all i ∈ {0, 1, 2}. For example, it is possible for f [A0]
to be strictly initial in A0, f [A2] to be strictly final in A2, and f [A1] to strictly
extend A1 on both sides. It follows that if for some B we have 3A ∼= 3B, then while
the cancellation theorem implies A ∼= B, it need not be that a given isomorphism
f : 3A → 3B witnesses this directly.

While cancellation in the second example above is not as “rigid” as in the first,
it is still “semi-rigid” in the sense that if f : 3A → 3B is an isomorphism, it cannot
be that f maps multiple copies of A from 3A into a single copy of B from 3B. For
example, we cannot have f [A0+A1] ⊆ B0. This follows from Corollary 3.2.6, since
ω + ω∗ is non-splitting.

Example 3.3.5. Suppose A = Q. Since Q is splitting, there are automorphisms
f : 3A → 3A that dramatically deform the copies of A in 3A. For example, it can
be that f [A0+A1] = A0 and f [A2] = A1+A2. It follows that if B is a linear order
such that 3A ∼= 3B, then while the cancellation theorem implies A ∼= B ∼= Q, a
given isomorphism f : 3A → 3B can be far from witnessing this directly.

In our proof of the cancellation theorem, we will have to deal with the fact that
a given isomorphism f : nA → nB need not directly witness A ∼= B in the sense of
mapping each copy of A onto the corresponding B. To handle this, we will case out
on whether A is splitting or non-splitting. In the non-splitting case, it is possible to
define condensations on A and B that “mod out” by local automorphisms, yielding
condensed orders A′ and B′ and an isomorphism f ′ : nA′ → nB′. This f ′ does
map each copy of A′ onto the corresponding B′, and this turns out to be enough
to conclude A ∼= B. In the splitting case a different argument is required.

Similar issues arise when proving the division theorem. Let us consider the
simplest case when the division theorem applies nontrivially, i.e. when we have
orders A and B such that 3A ∼= 2B. By the division theorem, there is an order C
such that A ∼= 2C and B ∼= 3C (so that A ∼= “ 2

3B”). Again, one might imagine
naively that an isomorphism f : 3A → 2B, that is, an isomorphism f : 3(2C) →
2(3C), must map each copy of C on the A-side onto a corresponding copy of C on
the B-side. But this is not always the case. How far f can depart from this “rigid
division” depends on whether or not C is splitting.

Examples 3.3.6.

i. Suppose A = 2Z and B = 3Z. Then any isomorphism f : 3A → 2B maps
each copy of Z in 3A onto the corresponding copy in 2B.

ii. If A = 2(ω + ω∗) and B = 3(ω + ω∗), then any isomorphism f : 3A → 2B
maps each copy of ω+ω∗ in 3A onto the corresponding copy in 2B “within
a margin of Z,” in the same sense as Example 3.3.4 above.

iii. If A = 2Q and B = 3Q, then an isomorphism f : 3A → 2B may map
multiple copies of C on the A-side into a single copy on the B-side, or vice
versa.
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Notice that in (iii.), while the division theorem correctly gives that there is C
(namely C = Q) such that A = 2C and B = 3C, in this case since C is splitting,
we have C ∼= A ∼= B ∼= 2C ∼= 3C ∼= Q.

3.4. Replacements of R up to an orbit equivalence relation. Many of our
results about (LO,+) will involve replacements of R up to the orbit equivalence
relation of a group of automorphisms of R. We describe the general construction of
such replacements below. In the next section we will use this construction to build
examples of additively commuting pairs of linear orders.

Let Aut(R, <) denote the group of (order) automorphisms of R. Since transla-
tions are automorphisms, we may view the additive group of real numbers (R,+) as
a subgroup of Aut(R, <) by identifying each r ∈ R with the translation x 7→ x+ r.

Let H be a fixed subgroup of Aut(R, <). In practice we will often have H ≤
(R,+), in which case we say that H is a group of translations. Also typically, H
will contain 1 (i.e. the translation x 7→ x+ 1).

Let EH denote the orbit equivalence relation of H, i.e. the equivalence relation
on R defined by xEHy if there exists f ∈ H such that f(x) = y. For x ∈ R, we
write [x]H (or simply [x], when H is understood) for the EH -equivalence class of x.

For every EH -class [x], fix a linear order I[x] and consider the replacement R(I[x])
up to the orbit equivalence relation EH . By definition of this replacement, for every
x ∈ R and f ∈ H we have Ix = If(x) = I[x] = I[f(x)]. In particular, if r ∈ H is a
translation we have Ix = Ix+r = I[x] = I[x+r].

The key property of such replacements is the following. Suppose K ⊆ R is a
suborder of R, and f ∈ H. (In practice K is often an interval.) Observe that
the restricted replacement K(I[x]) of K is isomorphic to the replacement f [K](I[x])
of its image f [K]. The isomorphism is given by the map (x, i) 7→ (f(x), i). This
map is well-defined because Ix = If(x) for every x ∈ R, and is order-preserving
since f is an automorphism of R. If f is the translation by r, then we express this
isomorphism by writing K(I[x]) ∼= (K + r)(I[x]).

3.5. Commuting pairs of linear orders. In this section we introduce the notion
of a commuting pair of linear orders and state Aronszajn’s theorem characterizing
such pairs. The theory of commuting pairs is closely connected to Lindenbaum’s
cancellation and division theorems, as we will show later.

Definition 3.5.1. A pair of linear orders A and B is additively commuting if
A+B ∼= B +A. We call such a pair of orders a commuting pair.

Examples 3.5.2.

i. If A and B are finite, say A ∼= n and B ∼= m, then A and B additively
commute, since A+B ∼= n+m ∼= m+ n ∼= B +A. More generally, if there
is a linear order C such that A ∼= nC and B ∼= mC, then A and B commute
since A+B ∼= B +A ∼= (n+m)C.

We call a commuting pair of this form a rational pair.
ii. Another way that a pair A and B can commute is if one of the orders bi-

absorbs the other. That is, if A+B ∼= B +A ∼= A or A+B ∼= B +A ∼= B,
then A and B commute.

We call such a pair a bi-absorbing pair.

Tarski conjectured that every commuting pair of linear orders A and B is either
a rational pair or bi-absorbing pair. In unpublished work, he was able to show that
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if A and B commute and are either countable or scattered, then A and B are either
a rational pair or bi-absorbing pair.

Lindenbaum, also in unpublished work, found a counterexample to Tarski’s con-
jecture. Aronszajn was later able to characterize the commuting pairs of orders,
and in so doing showed that Lindenbaum’s counterexample was essentially the only
other kind of commuting pair. We will call pairs of Lindenbaum’s type irrational
pairs. Below we present the general construction of irrational pairs and state Aron-
szajn’s theorem. We defer the proof until Section 6.

3.5.1. r-pairs and Aronszajn’s theorem. Fix r ∈ R, 0 < r < 1, and let H = ⟨1, r⟩
be the subgroup of Aut(R, <) generated by the translations 1 and r. Note that
H is a group of translations. Let EH be the orbit equivalence relation of H. For
every EH -class [x], fix a linear order I[x], and consider the replacement R(I[x]). We
call such a replacement a ⟨1, r⟩-replacement. For every s ∈ H and x ∈ R we have
Ix = Ix+s = I[x] = I[x+s].

Consider the interval I0 that replaces 0. For any s ∈ [0], we have I0 = Is = I[0].
In particular, Ir = I1 = I[0]. Choose a cut c = (L,R) in I0, so that I0 ∼= L + R.
We allow c to be the cut at the right or the left of I0, so that one of L or R may
be empty (or both, if I0 is empty).

Define U = R + (0, 1)(I[x]) + L. Here, (0, 1) denotes the open interval from 0
to 1 in R, and (0, 1)(I[x]) denotes the restriction of the replacement R(I[x]) to this
interval. We think of U as being almost the restriction of R(I[x]) to the closed
interval [0, 1], but where we have cut the intervals I0 ∼= L + R and I1 ∼= L + R in
the middle, and included only the final R segment from I0 on the left of U and the
initial L segment from I1 on the right of U . Thus we have L+U +R ∼= [0, 1](I[x]).

We claim U + s ∼= U for any s ∈ ⟨1, r⟩, where U + s denotes the translated
replacement R+(s, 1+s)(I[x])+L. Indeed, we have L+U+R ∼= [0, 1](I[x]) ∼= [s, 1+
s](I[x]) ∼= Is+(s, 1+s)(I[x])+I1+s

∼= L+R+(s, 1+s)(I[x])+L+R = L+(U+s)+R.
Moreover, the natural isomorphism witnessing L+U +R ∼= L+ (U + s) +R sends
L to L and R to R, so that U ∼= U + s, as claimed.

Observe that U ∼= R + (0, r)(I[x]) + Ir + (r, 1)(I[x]) + L ∼= R + (0, r)(I[x]) + L+
R+(r, 1)(I[x])+L. Let A = R+(0, r)(I[x])+L and B = R+(r, 1)(I[x])+L. Then
U ∼= A+B.

We claim that A and B are a commuting pair. Indeed, we have A + B ∼= U ∼=
U + r ∼= R + (r, 1 + r)(I[x]) + L = R + (r, 1)(I[x]) + I1 + (1, 1 + r)(I[x]) + L ∼=
R + (r, 1)(I[x]) + L + R + (1, 1 + r)(I[x]) + L ∼= B + (A + 1), where A + 1 denotes
R + (1, 1 + r)(I[x]) + L. But by the above, since 1 ∈ ⟨1, r⟩ we have A + 1 ∼= A, so
that A+B ∼= B +A, as desired.

Definition 3.5.3. Fix r ∈ R such that 0 < r < 1. Suppose H ≤ Aut(R, <) is a
group of automorphisms of R such that ⟨1, r⟩ ≤ H. Suppose R(I[x]) is a replacement
of R up to the orbit equivalence relation EH . Fix a decomposition I[0] ∼= L+R.

If A and B are a pair of orders such that A ∼= R + (0, r)(I[x]) + L and B ∼=
R+ (r, 1)(I[x]) + L, then we call A and B an r-pair.

When we say that a given pair of orders A and B is an r-pair, then we mean
that for some group of automorphisms H containing ⟨1, r⟩ as a subgroup, some
replacement R(I[x]) with respect to EH , and some decomposition I[0] ∼= L+R, we
have A ∼= R+ (0, r)(I[x]) + L and B ∼= R+ (r, 1)(I[x]) + L.

Proposition 3.5.4. If A and B form an r-pair, then A+B ∼= B +A.
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Proof. This follows from the argument above, since we only need ⟨1, r⟩ ≤ H for the
argument to work. □

When r is rational, we say that an r-pair A,B is a rational pair, and when r
is irrational, we say A,B is an irrational pair. It is possible that a given pair of
orders A and B is a rational pair with respect to some rational r and an irrational
pair with respect to some irrational r′. We will show in Section 4 that there are
rational pairs that are not irrational, and irrational pairs that are not rational.

Let us check that this definition of rational pair is equivalent to the one given
at the beginning of the section. Suppose that A and B form a rational r-pair, and
r = p

q when written in reduced form. By Bezout’s lemma we have ⟨1, r⟩ = ⟨ 1q ⟩. Let
C = R+ (0, 1

q )(I[x]) + L. Since 1
q ∈ H, we have C ∼= C + n

q for every n ∈ Z, where
C+ n

q is defined as above. Notice that A ∼= C+(C+ 1
q )+(C+ 2

q )+ · · ·+(C+ p−1
q )

and B ∼= (C + p
q ) + · · ·+ (C + q−1

q ). This gives A ∼= pC and B ∼= (q − p)C.

Conversely, suppose that A and B are linear orders such that for some nonzero
n,m ∈ N and order C we have A ∼= nC and B ∼= mC. Let q = n + m, p = n,
and r = p

q . Let H = ⟨ 1q ⟩ and observe ⟨1, r⟩ ≤ H (we have H = ⟨1, r⟩ if p, q are

coprime). Let R(I[x]) be the replacement of R up to EH in which I[0] = C and
I[x] = ∅ for all x ̸∈ [0]. Decompose I[0] as L + R where L = C and R = ∅. Let A′

and B′ be the corresponding r-pair. Then A′ and B′ form a rational pair, and it
follows that since 1

q ∈ H we have A′ ∼= pC and B′ ∼= (q− p)C, that is A′ ∼= nC ∼= A

and B′ ∼= mC ∼= B. Thus A and B form an r-pair, which confirms the equivalence
of the two definitions of rational pair.

Here is Aronszajn’s characterization of commuting pairs.

Theorem 3.5.5. (Aronszajn’s commuting pairs theorem) Suppose that A and B
are a commuting pair of linear orders. Then either A and B are a bi-absorbing
pair, or A and B are an r-pair for some r, 0 < r < 1.

Aronszajn’s theorem is not a dichotomy: it is possible for example that A and
B form an r-pair and also that A + B ∼= B + A ∼= A. However, there is a refined
version of Aronszajn’s theorem in which the cases are mutually exclusive. We will
present this refined version and its proof in Section 6.

4. Automorphisms of linear orders

In this section, we develop the theory of group actions on linear orders that we
will need for our arithmetic results, and prove the cancellation and division theo-
rems. Of crucial importance for our approach to the proofs is Hölder and Conrad’s
characterization the groups G that are isomorphic to a subgroup of (R,+). These
are exactly the groups that admit an Archimedean left-ordering; see subsection 4.4.

For the remainder of this section, unless it is otherwise specified, let X denote
an arbitrary but fixed linear order.

4.1. Bumps, blocks, and bubbles. Given an automorphism f : X → X and a
point x ∈ X, the orbit of x under f is the set of iterates {fn(x) : n ∈ Z}. We
denote this orbit by of (x), or simply o(x) when f is understood.

If x = f(x) is a fixed point of f , then o(x) = {x}. Otherwise, either x < f(x) or
f(x) < x. In the first case we have . . . < f−1(x) < x < f(x) < f2(x) < . . ., and in
the second we have . . . < f(x) < x < f−1(x) < f−2(x) < . . ., so that in either of
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these cases the order type of o(x) is Z. The support of f , denoted supp(f), is the
set {x ∈ X : x ̸= f(x)} of non-fixed points of f .

The orbital of x under f , denoted Of (x) or simply O(x) when f is under-
stood, is the convex closure of of (x): Of (x) = {y ∈ X : y ∈ [{fn(x), fn+1(x)}]
for some n ∈ Z}. When of (x) is not a singleton (i.e. when of (x) ∼= Z), Of (x) is an
open interval, namely the interval spanned by of (x) ∼= Z. Since [{fn(x), fn+1(x)}] =
[{f−(−n)(x), f−(−(n+1))(x)}], we have Of (x) = Of−1(x). That is, the orbitals of
f and f−1 coincide. Since f is order-preserving, if fn(x) ≤ y ≤ fn+1(x), then
for every k ∈ Z we have fn+k(x) ≤ fk(y) ≤ fn+k+1(x) ≤ fk+1(y). A symmetric
comment applies when fn+1(x) ≤ y ≤ fn(x). It follows that y ∈ O(x) if and only
if x ∈ O(y), so that the orbitals of f compose a convex equivalence relation on X.
We write X/Of for the set of orbitals of f .

The orbitals of f are the smallest convex subsets of X that are fixed setwise by
f . That is, if I ⊆ X is an interval, then f [I] = I if and only if I =

⋃
x∈I O(x) is

the union of its f -orbitals.
We say that f is increasing at x if x < f(x), and decreasing at x if the inequality

is reversed. We say f is increasing on an orbital Of (x) if f is increasing at x, or
equivalently if f is increasing at every y ∈ Of (x); decreasing on Of (x) is defined
symmetrically. Observe that f is increasing at a point or orbital if and only if its
inverse f−1 is decreasing at the same point or orbital.

A bump is an automorphism f with exactly one non-singleton orbital. If f is a
bump, then we write O(f) for the unique non-singleton orbital of f , so that for any
x ∈ O(f) we have O(x) = O(f) = supp(f). A bump f is bounded to the left if there
is x ∈ X with x < O(f) and bounded to the right if there is y > O(f). We say f
is bounded if it is bounded on at least one side, and unbounded if it is bounded on
neither side. We also call an unbounded bump f an irreducible automorphism.

There is a basic connection between bumps and sums of linear orders that will
allow us to use results about automorphisms to prove arithmetic results about
(LO,+). Specifically, suppose f is a bump on X, and f is increasing on O(f).
Fix x ∈ O(f). Let A denote the interval [x, f(x)), and let An denote the interval
[fn(x), fn+1(x)). Then An = fn[A], and in particular An

∼= A. By definition of
O(f) we have O(f) ∼= . . .+A−1+A0+A1+A2+ . . . = Z(Ai). Thus O(f) ∼= ZA. In
the other direction, for any order of the form ZA, there is an obvious automorphism
f : ZA → ZA, namely the map that sends every copy of A onto the subsequent
copy to its right. This automorphism is an irreducible automorphism of ZA, that
is, an unbounded bump on ZA.

We can connect irreducible automorphisms to the arithmetic of (LO,+) by ex-
tending isomorphisms between finite sums of linear orders to isomorphisms between
their Z-sums. For example, suppose that A and B are linear orders such that
mA ∼= nB, and f : mA → nB is a fixed isomorphism. By concatenating copies
of f to the left and right we can extend f to an isomorphism F : ZA → ZB. For
the moment, let X = ZA ∼= ZB. It turns out that by analyzing the group of auto-
morphisms Aut(X,<), we will be able to find all common divisors of the original
orders A and B. As a first step in this analysis, we will need to condense X in such
a way that the only automorphisms on the condensed order are irreducible. The
condensation relation we will use is defined as follows.

Definition 4.1.1. Define a relation ∼b on X by the rule x ∼b y if either there is
a bounded bump f : X → X such that x, y ∈ O(f), or x = y.
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We include the clause “or x = y” in this definition just in case there is no
bounded bump f with x ∈ O(f).

Proposition 4.1.2. The relation ∼b is a convex equivalence relation on X.

Proof. The relation is clearly reflexive, symmetric, and convex. We show it is
transitive. Suppose x, y, z are points in X with x ∼b y ∼b z. If either x = y
or y = z then there is nothing to check, so we may assume that these points are
distinct. Since ∼b is convex, we may assume that either x < y < z or z < y < x
since in any other case we have immediately x ∼b z. Without loss of generality,
we may assume x < y < z. Fix bumps f, g such that x, y ∈ O(f) and y, z ∈ O(g).
Replacing one or both of the maps f and g with their inverses if necessary, we may
assume that f and g are increasing on O(f) and O(g) respectively.

If either x ∈ O(g) or z ∈ O(f) we immediately get x ∼b z. So suppose x < O(g)
and z > O(f). Then O(f) extends O(g) strictly to the left, and O(g) extends O(f)
strictly to the right. We say in this case that the intervals O(f) and O(g) cross.

We claim that gf is a bump with O(gf) = O(f) ∪ O(g). Every point outside
of O(f) ∪ O(g) is fixed by gf , so it suffices to check that this set consists of a
single orbital of gf , or equivalently that Ogf (y) = O(f) ∪ O(g). The forward
containment is immediate, since again, every point outside of O(f) ∪O(g) is fixed
by gf . So fix w ∈ O(f)∪O(g). If w ∈ O(f) = Of (y), then there is k ∈ Z such that
fk(y) ≤ w < fk+1(y). Assume k ≥ 0, the case when k < 0 is symmetric. Since y ≤
fn(y) ≤ (gf)n(y) for all n ≥ 0, there is l ≤ k such that (gf)l(y) ≤ w < (gf)l+1(y),
which gives w ∈ Ogf (y), as desired. The case when w ∈ O(g) is similar.

If either O(g) is bounded to the right, or O(f) is bounded to the left, then
O(gf) = O(f)∪O(g) is bounded to at least one side, and therefore witnesses x ∼b z.
However, it may be that O(f) is unbounded to the left and O(g) is unbounded to
the right, in which case O(gf) is an unbounded bump.

Suppose this is the case. We will modify f to get a bump f ′ such that O(f ′) is
bounded to the left and x, y ∈ O(f ′). Then by the same argument, O(gf ′) will be
a bounded bump witnessing x ∼b z and the proof will be complete.

Let A = A0 = [x, f(x)) and let B = B0 = [z, g(z)). For n ∈ Z, let An = fn[A]
and let Bn = gn[B]. Since these intervals partition O(f) and O(g) respectively, we
have O(f) ∼= Z(Ai) ∼= ZA and O(g) ∼= Z(Bi) ∼= ZB.

Since O(g) strictly extends O(f) to the right, there is n ∈ Z such that O(f) ∩
Bn ̸= ∅ but O(f)∩Bn+1 = ∅. Then Bn contains a tail of the Ai’s, that is Ai ⊆ Bn

for all sufficiently large i. It follows that ωA embeds convexly in Bn, which gives
2A ⩽c Bn and hence 2A ⩽ B.

Since O(f) strictly extends O(g) to the left, by a symmetric argument we have
ω∗B ⩽c A, and in particular B ⩽c A. Then since 2A ⩽c B ⩽c A, we get 2A ⩽c A.
By Corollary 3.2.6 it follows A ∼= 2A, that is, A is splitting. By 3.1.5, for some
order L we have A ∼= L+ ω∗A = L+ . . .+A+A+A.

In particular we have A−1
∼= L + ω∗A. Let K denote the final segment of A−1

isomorphic to ω∗A, and let O denote the final segment of O(f) consisting ofK along
with the intervals Ai for i ≥ 0. Then O ∼= K + A0 + A1 + . . . ∼= ω∗A+ ωA ∼= ZA,
and x, y ∈ O. Let f ′ : O → O be the automorphism that shifts every copy of A
in this sum onto the copy to its right, and extend f ′ to an automorphism of X by
letting f ′ be the identity outside of O. Then f ′ is a bump with x ∈ O(f ′) = O,
and bounded to the left since f−1(x) < O(f ′). By above, we are done. □
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Definition 4.1.3. For x ∈ X, we call the ∼b-class of x the bubble of x, and denote
it by b(x).

A bubble b(x) is nontrivial if it is not a singleton, that is, if there is at least one
bounded bump f with x ∈ O(f).

For a nontrivial bubble b(x) we have

b(x) =
⋃

{O(f) : f is a bounded bump with x ∈ O(f)}.

Since each O(f) appearing in this union is an open interval, b(x) is also an open
interval. While each O(f) is bounded on at least one side, it may be that b(x) is
unbounded.

The following proposition says that any bounded subinterval of a nontrivial bub-
ble is contained in a bounded bump.

Proposition 4.1.4. Suppose b(x) is a nontrivial bubble, and I ⊆ b(x) is an interval
such that y < I < z for some y, z ∈ b(x). Then there is a bounded bump f with
I ⊆ O(f) ⊆ b(x).

Proof. Since y, z ∈ b(x) we have y ∼b z. Thus [y, z] ⊆ O(f) ⊆ b(x) for some
bounded bump f . The conclusion follows. □

Next we would like to show that the bubble structure of X is preserved under
any automorphism f : X → X. We need some general facts about automorphisms
and conjugates of automorphisms.

Suppose that f : X → X is a fixed automorphism. For an automorphism g, we
denote the conjugate automorphism fgf−1 by gf . For any x ∈ X, we have by direct
calculation that f [og(x)] = ogf (f(x)), and it follows that f [Og(x)] = Ogf (f(x)).

If g is a bump with x ∈ O(g), then gf is also a bump with f(x) ∈ O(gf ), and by
what we have just observed we have f [O(g)] = O(gf ). Note that g is bounded if
and only if gf is bounded. Conversely, if h is a bump with f(x) ∈ O(h), then h is

of the form gf for some bump g with x ∈ O(g), namely g = hf−1

= f−1hf , and h
is bounded if and only if g is also bounded. Thus an interval O is a bounded bump
around x if and only if f [O] is a bounded bump around f(x).

If b(x) is a nontrivial bubble, then as noted above we have b(x) =
⋃
{O(g) :

g is a bounded bump with x ∈ O(g)}. Combining this with the observations in the
previous paragraph yields:

f [b(x)] = f [
⋃
{O(g) : g is a bounded bump with x ∈ O(g)}]

=
⋃
{f [O(g)] : g is a bounded bump with x ∈ O(g)}

=
⋃
{O(h) : h is a bounded bump with f(x) ∈ O(h)}

= b(f(x)).

This gives the following.

Proposition 4.1.5. For any x ∈ X and automorphism f : X → X, we have
f [b(x)] = b(f(x)).

Proof. If b(x) = {x} is trivial, then b(f(x)) must also be trivial, since any bounded
bump h with f(x) ∈ O(h) would yield a bounded bump g = f−1hf with x ∈ O(g).
Hence f [b(x)] = {f(x)} = b(f(x)), as desired.

The nontrivial case is proved above. □

Definition 4.1.6. A subset B ⊆ X is called a block if B is an interval and for
every automorphism f : X → X we have that either f [B] = B or f [B] ∩B = ∅.
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Identifying the intervals in a given order X that are blocks often helps in un-
derstanding the global structure of X. The following proposition says that bubbles
are blocks.

Proposition 4.1.7. Every bubble b(x) is a block of X.

Proof. If f [b(x)] ∩ b(x) ̸= ∅, then by Proposition 4.1.5 we have b(f(x)) ∩ b(x) ̸= ∅.
Since these are ∼b-classes, this implies b(f(x)) = b(x), i.e. f [b(x)] = b(x). □

4.2. G-actions and G-condensations. In this subsection we introduce the no-
tions of a G-action on X and a G-condensation of X by a group G, and present
some basic facts about these notions. Many of these facts are standard, and some
proofs are omitted. For a more detailed development, see [4].

Our notational conventions for groups are as follows. We use G to denote both
a group and its underlying set. For an arbitrary group G, we usually treat its
group operation as a product, and write g ·h or gh for the product of two elements
g, h ∈ G, and 1G or 1 for the identity element. When G acts on a linear order X (see
Subsection 4.2.1), we will also write gx for the element obtained from the action of
a given g ∈ G on a point x ∈ X. This creates ambiguity with product expressions
of the form gh, but in practice we hope that it will be clear from context whether
a given letter refers to a group element or point from X.

Later we will be interested especially in subgroups H ≤ R of the additive group
of real numbers. For such groups we instead write + for the group operation and
0 for the identity.

4.2.1. G-actions. Let Aut(X) = Aut(X,<) denote the group of automorphisms of
X, with composition as the group operation. For G a group, a G-action on X is a
homomorphism ϕ : G → Aut(X). We write G ↷ϕ X (or simply G ↷ X when the
homomorphism is understood) to mean that G acts on X via the homomorphism
ϕ. For g ∈ G and x ∈ X we write gx for ϕ(g)(x). For a suborder I ⊆ X we write
gI for {gx : x ∈ I}. Since gI = ϕ(g)[I], we have in particular that I ∼= gI.

Fix an action G ↷ϕ X. The kernel of the homomorphism ϕ, denoted ker(ϕ), is
the collection {g ∈ G : ϕ(g) = id} consisting of elements of G that act as the identity
on X. The action is faithful if ϕ is injective, or equivalently if ker(ϕ) = {1G}. In
this case, G is isomorphic to a subgroup H of Aut(X), namely H = ϕ[G].

Let N = ker(ϕ). It holds generally that G/N is isomorphic to ϕ[G], and hence
G/N acts faithfully on X via the natural isomorphism Φ : G/N → ϕ[G] defined by
Φ(gN) = ϕ(g). Under this isomorphism, an element gN ∈ G/N acts on a point
x ∈ X by the rule gNx = gx = ϕ(g)(x).

Notation 4.2.1. Suppose G ↷ X is an action and N is the kernel of this action.

Given f ∈ G, we write f̂ for the quotient class fN ∈ G/N .

Under this notation, any f̂ ∈ G/N acts as f on X, that is we have f̂x = fx for
all f ∈ G and x ∈ X.

An action G ↷ X is free if for all g ∈ G and x ∈ X, gx = x implies g = 1. Free
actions are faithful.

Frequently, G will be a subgroup of Aut(X) and ϕ will be the identity. In this
case the action G ↷ X is automatically faithful, and we have gx = g(x) for all
x ∈ X, g ∈ G. Such an action is free only if every non-identity automorphism
f ∈ G has no fixed points.
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Since automorphisms on X can be extended to automorphisms on its completion
X, actions on X can also be extended to actions on X. Explicitly, if G ↷ϕ X is an

action, then we obtain an action G ↷ϕ X via the homomorphism ϕ : G → Aut(X)

defined by the rule ϕ(g) = ϕ(g). Under this action, each g ∈ G acts on the points
in X as before, and for each gap c = (I, J) in X (i.e. each point c ∈ X \ X) we
have gc = (gI, gJ).

A faithful G-action on X remains faithful when extended to X, but a free action
on X need not remain free on X. This is because an automorphism f : X → X
may have no fixed points while still having fixed gaps. For example, consider the
automorphism f on 2Z = Z+Z that moves every point in each copy of Z one to the
right. Then f is fixed point free, but fixes the gap at the + sign, which becomes a
point in 2Z.

There is a natural notion of isomorphism between actions. If H and H ′ are
groups, X and Y are linear orders, and H ↷ X and H ′ ↷ Y are actions, we
say that these actions are isomorphic if there are isomorphisms Φ : X → Y and
ϕ : H → H ′ such that Φ(hx) = ϕ(h)Φ(x) for all h ∈ H and x ∈ X. We call Φ
an equivariant isomorphism of X and Y with respect to the actions by H and H ′

and the isomorphism ϕ. If H = H ′, then unless it is otherwise specified, we assume
that the isomorphism ϕ is the identity.

The following proposition says that if we extend two isomorphic actions to their
completions, the extended actions remain isomorphic.

Proposition 4.2.2. Suppose thatH ↷ X andH ′ ↷ Y are isomorphic actions, and
let Φ : X → Y be an equivariant isomorphism. Then the isomorphism Φ : X → Y
is equivariant with respect to the extended actions H ↷ X and H ′ ↷ Y . In
particular, these actions are isomorphic.

Proof. Let ϕ : H → H ′ be the underlying isomorphism of H and H ′ with respect
to which Φ is equivariant. We check that Φ is also equivariant with respect to ϕ.

We need only check equivariance for gaps x ∈ X \X. Fix such an x, and suppose
x = (I, J). Then for any h ∈ H we have hx = (hI, hJ). Then:

Φ(hx) = (Φ[hI],Φ[hJ ])
= (ϕ(h)Φ[I], ϕ(h)Φ(J)) (by equivariance of Φ)
= ϕ(h)(Φ[I],Φ[J ])
= ϕ(h)Φ(x),

which establishes the equivariance. □

4.2.2. G-condensations. We will be interested in actions that respect an underlying
condensation of X.

Definition 4.2.3. Suppose G ↷ X and ∼ is a condensation of X. We say that ∼
is a G-condensation if for all x, y ∈ X we have x ∼ y if and only if gx ∼ gy.

Equivalently, if ∼ is a condensation of X with condensation map c : X → X/∼,
then ∼ is a G-condensation if gc(x) = c(gx) for all g ∈ G and x ∈ X. Here we are
viewing c(x) as an interval of X and gc(x) as the image interval {gy : y ∈ c(x)}.

For a G-condensation ∼, the action G ↷ X yields an action G ↷ X/∼. This
action is also defined by the rule gc(x) = c(gx), now viewed as specifying how
an element g acts on a point c(x) of the condensed order X/∼. We call this
action the induced action on X/∼. The kernel of this action is N = {g ∈ G :



27

gx ∼ x for all x ∈ X}. Since ∼ is a condensation (i.e. a collection of intervals), the
kernel can be viewed as the automorphisms in G which only move points locally in
X (i.e. within their condensation classes).

Example 4.2.4. The bubble condensation ∼b is an Aut(X)-condensation.

Proof. This is exactly Proposition 4.1.5 □

4.2.3. The orbit equivalence relation of a G-action and the lift action. Suppose
G ↷ X is an action. The orbit equivalence relation of G ↷ X is the equivalence
relation EG on X defined by the rule xEGy if there exists g ∈ G such that gx = y.
For x ∈ X, the EG-equivalence class of x is Gx = {gx : g ∈ G}. We call this
class the G-orbit of x, and denote it also by [x]EG

, or [x] when the relation EG is
understood.

For any replacement X(I[x]) of X up to the relation EG, we can lift the action
G ↷ X to an action G ↷ X(I[x]) by defining g(x, i) = (gx, i). We call this action
the lift action on X(I[x]). It is well-defined because Ix = Igx = I[x] = I[gx] for all
x ∈ X and g ∈ G. If we let ∼ denote the condensation on X(I[x]) that condenses
every replacing order Ix to a point (i.e. (x, i) ∼ (y, j) if and only if x = y), then ∼ is
a G-condensation. The induced action on the order X(I[x])/∼ (which is isomorphic
to X via the isomorphism c(x, i) 7→ x) is isomorphic to the original action of G on
X (since c(x, i) 7→ x is equivariant).

We will use the following notation for the lift action.

Definition 4.2.5. Given an action G ↷ X and a replacement X(I[x]) up to the

orbit equivalence relation of G, we write G ↷l X(I[x]) for the lift action defined by
the rule g(x, i) = (gx, i).

Walking in the other direction, suppose ∼ is a G-condensation of X with as-
sociated condensation map c. Let E∗ denote the orbit equivalence relation of the
induced action G ↷ X/∼. If a, b are points in X/∼, say a = c(x) and b = c(y) for
some x, y ∈ X, and moreover we have aE∗b, then since there is g ∈ G such that
gc(x) = c(y), we have c(x) ∼= c(y) (viewing these as intervals in X). Thus we can
view X not only as a replacement X/∼(c(x)) of X/∼ by the condensed intervals
c(x), but actually as a replacement of X/∼ up to the relation E∗. We express this
by writing X ∼= X/∼([c(x)]).

In the interest of clarifying the discussion in the next subsection, let us spell out
the previous paragraph more explicitly. As in Section 2.4, for each c(x) ∈ X/∼,
define Ic(x) = c(x). Define ι : X → X/∼(Ic(x)) by ι(x) = (c(x), x). Then ι is
an isomorphism of X with the replacement X/∼(Ic(x)), and we can view ι as an
identification if we label each x ∈ X with the enriched coordinates (c(x), x).

What we are saying above is that we can view the replacement X/∼(Ic(x)) as a
replacement X/∼(I[c(x)]) up to the orbit equivalence relation E∗, in the weak sense
that c(x)E∗c(y) implies Ic(x) ∼= Ic(y) (i.e. c(x) ∼= c(y)). If we want to get a bona
fide replacement up to E∗ (i.e. so that Ic(x) = Ic(y) when c(x)E∗c(y)), we would
need to fix for each E∗-class [c(x)] an order I[c(x)] that is isomorphic to each class
a ∈ [c(x)], and then define the replacement X/∼(Ic(x)) = X/∼(I[c(x)]) by defining
Ic(x) = I[c(x)] for every c(x) ∈ X/∼. We carry out this construction in the next
subsection.

4.2.4. The top part of a G-action. Suppose G ↷ X is an action and ∼ is a G-
condensation. We can think of ∼ as splitting the action of G into global and local
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parts. More precisely, for a given g ∈ G, we can view g as acting first globally
on X as an order-preserving permutation of the intervals c(x) ∈ X/∼ (i.e. as
an automorphism of X/∼), and then locally by automorphisms on each of these
intervals.

We would like to isolate just the global part of the action. That is, we would
like to associate to the action G ↷ X a modified action in which each g ∈ G
acts on X by moving the condensation classes c(x) in the same way as before, but
without moving the points within each class. Intuitively, this is just the lift of the
induced action G ↷ X/∼ to X, where here we are viewing X as the replacement
X/∼(c(x)). But to make this precise requires that we view condensation classes
c(x) and c(y) that lie in the same G-orbit of X/∼ as being not only isomorphic
but equal, i.e., that we view X as a bona fide replacement of X/∼ up to the orbit
equivalence relation of G.

Let us spell this out. Let E∗ denote the orbit equivalence relation of the induced
action G ↷ X/∼. Let N denote the kernel of this action. Observe that E∗ is also
the orbit equivalence relation of the faithful action G/N ↷ X/∼.

As we observed in the previous subsection, if c(x)E∗c(y) then c(x) ∼= c(y). For
each E∗-class [c(x)], fix an order I[c(x)] that is isomorphic to each c(y) ∈ [c(x)].
Now, for each class c(x), define Ic(x) = I[c(x)]. Then we have Ic(x) ∼= c(x) for every
c(x) ∈ X/∼, and whenever c(x)E∗c(y) we have Ic(x) = Ic(y) = I[c(x)] = I[c(y)].

By definition, the replacement X/∼(Ic(x)) is a replacement X/∼(I[c(x)]) up to
the relation E∗. For each class c(x), fix an isomorphism ic(x) : c(x) → I[c(x)]. Then
we get an isomorphism ι : X → X/∼(I[c(x)]) by defining ι(x) = (c(x), ic(x)(x)).

Now we can lift the action G ↷ X/∼ to the action G ↷l X/∼(I[c(x)]) by
defining g(c(x), i) = (gc(x), i) as in Definition 4.2.5. We can pull this action back
to an action G ↷t X by defining gx = ι−1(gι(x)). We call this action the top part
of the original action G ↷ X with respect to the condensation ∼.

Notice that the kernel of this action is the same as the kernel of the induced action
G ↷ X/∼. This is because g(c(x), i) = (c(x), i) for all points (c(x), i) ∈ X/∼(I[c(x)])
if and only if gc(x) = c(x) for all points c(x) ∈ X/∼, i.e. if and only if g ∈ N . We
will also call the resulting faithful action G/N ↷t X the top part of G ↷ X, and
in practice this is often the action of interest. We record its definition below.

Definition 4.2.6. Suppose that G ↷ X is an action and ∼ is a G-condensation.
We call the action G/N ↷t X defined above the top part of the action G ↷ X
with respect to the condensation ∼.

Observe that the isomorphism ι : X → X/∼(I[c(x)]) is equivariant with respect

to the actions G/N ↷t X and G/N ↷l X/∼(I[c(x)]), so that these actions are
isomorphic. Relatedly, observe that ∼ is a G/N -condensation with respect to the
action G/N ↷t X, and the resulting induced action of G/N on X/∼ coincides with
the original induced action G/N ↷ X/∼.

We note that, strictly speaking, the action G/N ↷t X depends on the iso-
morphisms ic(x). If we define the action with respect to a different collection of
isomorphisms i′c(x) : c(x) → I[c(x)] then we get a different action (G/N ↷t X)′.

However, letting ι′ : X → X/∼(I[c(x)]) denote the corresponding isomorphism, it is
not hard to check that the actions G/N ↷t X and (G/N ↷t X)′ are isomorphic,
as witnessed by the equivariant automorphism ι′ι−1 : X → X. This justifies the
terminology “the top part action.”
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4.3. Ordered groups and ordered group actions. In this subsection we intro-
duce the notion of an ordered group, and define what it means for such a group to
act in an ordered way on X.

Definition 4.3.1. An ordered group is a triple (G, ·, <) where (G, ·) is a group and
< is a linear order on G such that for all g, h, f ∈ G we have h < f ⇒ gh < gf .

A group (G, ·) is orderable if there exists a linear order relation < such that
(G, ·, <) is an ordered group.

An ordered group is also called a left-ordered group. A triple (G, ·, <) is a right-
ordered group if < is a linear order on G such that h < f ⇒ hg < fg for all
g, h, f ∈ G, and a bi-ordered group if it is both a left-ordered and right-ordered
group. Left-ordered groups need not be right-ordered in general, and vice versa,
but an abelian group that is ordered on one side is automatically bi-ordered. We
use left-order, right-order, and bi-order respectively to refer to the order relation <
of a left-ordered, right-ordered, and bi-ordered group.

For the remainder of this subsection, G = (G, ·, <) denotes an ordered group.

Definition 4.3.2. A G-action G ↷ X is an ordered G-action if for all g, h ∈ G
and x ∈ X we have g < h ⇒ gx < hx.

An ordered action G ↷ X is automatically free, and for any point x ∈ X, the
G-orbit Gx is order-isomorphic to G.

For any action G ↷ X (not necessarily ordered), we can define a partial order
on G by the rule g < h if gx < hx for all x ∈ X. We call this the pointwise order
on G induced by the action G ↷ X. An action is ordered if its pointwise order is
a linear order.

The action of G on (G,<) by left multiplication is a G-action. It is an ordered
G-action if and only if the left-order < on G is also a right-order.

4.4. Irreducible automorphism groups and the Hölder-Conrad theorem.
In this subsection we define the notion of a group of irreducible automorphisms,
and use the Hölder-Conrad characterization of the Archimedean ordered groups
to show that such groups are always isomorphic to a subgroup of (R,+). In the
next section we will use this fact to show that an action on X by a group of
irreducible automorphisms yields a representation of X as a replacement of R.
Such representations are the basis of our arithmetic results for (LO,+).

Recall that an automorphism f : X → X is irreducible if f is an unbounded
bump, i.e. a bump with O(f) = X.

Definition 4.4.1. A group of automorphisms H ≤ Aut(X) is irreducible if every
f ∈ H, f ̸= 1 is irreducible.

If H ≤ Aut(X) is irreducible, then we call the natural H-action on X an ir-
reducible action. More generally, if G ↷ϕ X is a G-action, we say this action is
irreducible if ϕ[G] ≤ Aut(X) is irreducible.

An ordered group (G, ·, <) is called Archimedean if whenever f, g ∈ G, f ̸= 1,
there is n ∈ Z such that g < fn.

Proposition 4.4.2. An ordered group (G, ·, <) is Archimedean if and only if the
action of G on (G,<) by left multiplication is irreducible.

Proof. Suppose G is Archimedean, and fix f ∈ G, f ̸= 1. Then for any g ∈ G, there
is m ∈ Z such that g−1 < fm, which gives f−m < g. Hence for any g ∈ G there are
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m,n ∈ Z such that f−m1 = f−m < g < fn = fn1. It follows Of (1) = G. Hence
f is irreducible (or more precisely, the automorphism of (G,<) obtained from left
multiplication by f , is irreducible).

Conversely, suppose G acts irreducibly on itself by left multiplication, and fix
f, g ∈ G, f ̸= 1. Then for some n, we have fn−11 ≤ g < fn1. Since f was arbitrary,
G is Archimedean. □

Theorem 4.4.3. Suppose H ≤ Aut(X) is a group of irreducible automorphisms.
Let < denote the pointwise ordering on H, i.e. the relation on H defined by the
rule h < g if for every x ∈ X we have hx < gx.

Then < is a linear order on H. Under this ordering, (H, ◦, <) is an Archimedean
ordered group, and the natural action of H on X is an ordered H-action.

Proof. We first check that hx < gx for some x ∈ X if and only if hx < gx for
every x ∈ X. If not, then without loss of generality there are points x, y ∈ X with
x < y such that hx < gx but gy ≤ hy. Then x < h−1gx and h−1gy ≤ y. Letting
f = h−1g and iterating these inequalities we get the chains

x < fx < f2x < . . .

and

. . . ≤ f2y ≤ fy ≤ y.

Since f ∈ H is order-preserving, we have fnx < fny for all n ∈ N. From the chains
of inequalities above it then follows that fnx < y for all n ∈ N, contradicting that
f ∈ H is irreducible.

Fix a point 0 ∈ X. By the previous paragraph, the pointwise order < on H is
equivalently defined by the rule f < g if f(0) < g(0). We check that this is a linear
ordering on H and that (H, ◦, <) is an Archimedean ordered group.

To show that < is a linear ordering, we need to show that < is irreflexive,
transitive, and total onH. The irreflexivity and transitivity of< follow immediately
from the irreflexitivity and transitivity of the ordering on X.

For totality, observe that by totality of the ordering on X, we have for any
f, g ∈ H that exactly one of f0 < g0, g0 < f0, and f0 = g0 holds. Totality of the
relation < on H will then follow if we can show that f0 = g0 implies f = g. But if
f0 = g0 then g−1f0 = 0. Since any irreducible automorphism has no fixed points,
it follows that g−1f = 1, i.e. f = g, as desired.

Thus < is a linear ordering on H. Suppose g, f, h ∈ H and f < h. Then f0 < h0
in X, which gives gf0 < gh0, i.e. gf < gh. Hence (H, ◦, <) is an ordered group.
It is Archimedean, since for any f, g ∈ H, f ̸= 1, we can find n ∈ Z such that
fn0 > g0, by the irreducibility of f . Finally, H’s action on X is an ordered action
since for a given x ∈ X, we have hx < gx if and only if h < g. □

The following theorem is an improvement, due to Conrad, of a famous theorem
of Hölder. It says that the Archimedean groups H are precisely those that are
isomorphic to a subgroup of (R,+, <). In the next section we will use this theorem,
along with Theorem 4.4.3, to prove a representation theorem for linear orders X
that admit an action H ↷ X by irreducible automorphisms.

Theorem 4.4.4. (Hölder; Conrad) An ordered group (H, ·, <) is Archimedean if
and only if H is isomorphic (as an ordered group) to a subgroup of (R,+, <).
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Proof. Since any subgroup of an Archimedean group is Archimedean, the backward
direction is immediate.

For the forward direction, we may assume H is not the trivial group. Let < be
an ordering on H so that (H, ·, <) is Archimedean. Choose any f ∈ H, f > 1.
For each g ∈ H and n ∈ N, define mg(n) = m to be the unique integer such that

fm ≤ gn < fm+1. Then lg = limn→∞
mg(n)

n exists, and the map Φ : H → R defined
by Φ(g) = lg is an embedding of H in (R,+, <) with Φ(f) = 1. For details, see [2,
Chapter 3]. □

A group (G, ·) is Archimedean orderable if there is a linear ordering < on G such
that (G, ·, <) is Archimedean. Theorem 4.4.4 says that a group G is Archimedean
orderable if and only if it is isomorphic to a subgroup of (R,+).

A remarkable feature of Theorem 4.4.4 is that we do not need to assume that
H is abelian to get the conclusion. Hölder originally did make this assumption;
Conrad showed it was unnecessary.

Corollary 4.4.5. If H ≤ Aut(X) is an irreducible group of automorphisms, then
H is isomorphic to a subgroup of (R,+).

Proof. Immediate from 4.4.3 and 4.4.4. □

4.5. The group Aut(ZA) when A is non-splitting. Lindenbaum’s cancellation
and division theorems apply to isomorphisms of the form mA ∼= nB, and Aron-
szajn’s commuting pairs theorem to isomorphisms of the form A + B ∼= B + A.
Our approach to their proofs will be to view all three theorems as being each con-
cerned with a certain order X with at least one irreducible automorphism, namely
an appropriate Z-sum of the orders A and B.

More specifically, if A and B are orders such that mA ∼= nB, then we have
ZmA ∼= ZmB as well. But ZmA ∼= ZA and ZnB ∼= ZB, so that ZA ∼= ZB.
Identifying ZA and ZB, and denoting this order as X, we have that X has at
least two irreducible automorphisms (or at least one, in the case when m = n and
A ∼= B), namely the automorphisms “+A” and “+B.” These are the maps that
take every copy of A, or respectively B, onto the copy to its right in X. In a similar
spirit, if A + B ∼= B + A, we can consider the order X = Z(A + B). It turns out
that this order not only has the obvious “+(A+B)” automorphism, but “+A” and
“+B” automorphisms as well.

Though these irreducible automorphisms are always present, in both situations
it turns out that the global structure of the group Aut(X) depends very much on
whether or not the orders A and B are splitting, and our proofs will case out on
this dichotomy. In this subsection, we analyze orders X of the form ZA according
to whether or not A is splitting. Our main result is that when A is non-splitting,
Aut(X) has a non-trivial Archimedean quotient. This result brings together the
work from the previous subsections. In the next subsection, we will use it to prove
Lindenbaum’s theorems.

Definition 4.5.1. Suppose f : X → X is an irreducible automorphism. Identify
f with its extension to X, and fix x ∈ X.

If f is increasing, define

Ax,f = {y ∈ X : x ≤ y < f(x)} = [x, f(x)) ∩X.
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If f is decreasing, define

Ax,f = {y ∈ X : f(x) < y ≤ x} = (f(x), x] ∩X.

For a given irreducible automorphism f : X → X and x ∈ X, we have as before
that the iterates fn[Ax,f ] partition X, so that X ∼= ZAx,f . Conversely, it is not
hard to see that if I is an interval such that {fn[I] : n ∈ Z} is a partition of X,
then I must be of the form Ax,f for some x ∈ X.

Suppose x ∈ X. If f is increasing, then x is the left endpoint of Ax,f , and if f is
decreasing, then x is the right endpoint of Ax,f . In particular, it need not be true
that Ax,f

∼= Ax,f−1 . However, we do have isomorphism between these intervals
“up to the point x” in the sense that f−1[Ax,f \ {x}] = Ax,f−1 \ {x}. If instead

x ∈ X \X is a gap, then Ax,f is necessarily an open interval, since f(x) is a gap
as well. In this case we have Ax,f

∼= Ax,f−1 . Since we can always replace a given
irreducible automorphism with its inverse, we will usually be content to work with
segments Ax,f for f increasing.

The following theorem says that whether an interval of the form Ax,f is splitting
does not depend on either x or f .

Theorem 4.5.2. Suppose that f and g are irreducible automorphisms of X, and
x, y ∈ X. Then Ax,f is splitting if and only if Ay,g is splitting.

Proof. We need two lemmas. The first can be viewed as a weak form of Linden-
baum’s cancellation theorem in which we consider convex embeddings instead of
isomorphisms.

Lemma 4.5.3. [Cite Tarski] Suppose that A and B are linear orders such that for
some nonzero n ∈ N we have nA ⩽c nB. Then A ⩽c B.

Proof. By induction on n. Clear for n = 1. For n > 1, write nA as A1+A2+· · ·+An

and nB as B1+B2+· · ·+Bn. Fix a convex embedding f : nA → nB. If f [A1] ⊆ B1

then f witnesses that A ⩽c B. Otherwise we must have f [A2 + · · · + An] ⊆
B2 + · · · + Bn, so that f witnesses (n − 1)A ⩽c (n − 1)B. By induction we have
A ⩽c B in this case as well. □

Lemma 4.5.4. Suppose that A and B are linear orders, and for some n,m, k ∈ N
with k ≥ 1 and n,m > 1 we have nA ⩽c mB ⩽c kA. Then A is splitting if and
only if B is splitting.

Proof. Suppose first that A is splitting. Then qA ∼= pA for all nonzero q, p ∈ N.
Thus our hypothesis yields mA ⩽c mB ⩽c A. By Lemma 4.5.3, the left inequality
gives A ⩽c B. Then since m > 1, the right inequality yields 2B ⩽c A. Thus
2B ⩽c A ⩽c B, which gives 2B ⩽c B. Hence 2B ∼= B by Corollary 3.2.6.

Now suppose B is splitting. Then nA ⩽c mB implies nA ⩽c B which gives
2A ⩽c B since n > 1. On the other hand, mB ⩽c kA implies kB ⩽c kA which
gives B ⩽c A by Lemma 4.5.3. Thus 2A ⩽c B ⩽c A, which yields 2A ⩽c A. □

Now we can prove the theorem. By the irreducibility of f and g we have X ∼=
ZAx,f

∼= ZAy,g. Identify the orders ZAx,f and ZAy,g with X. It is clear that any
two consecutive copies of Ax,f in X can be enclosed in m consecutive copies of
Ay,g for some sufficiently large m > 1, and these in turn can be enclosed in some
k consecutive copies of Ax,f . Thus 2Ax,f ⩽c mAy,g ⩽c kAx,f . The theorem now
follows from Lemma 4.5.4. □
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Definition 4.5.5. Suppose that X has an irreducible automorphism.
We say that X is internally splitting if for some (equivalently, every) irreducible

automorphism f : X → X and x ∈ X, we have that Ax,f is splitting.
We say that X is internally non-splitting if X is not internally splitting. Equiv-

alently, X is internally non-splitting if for some (equivalently, every) irreducible
automorphism f : X → X and x ∈ X, we have that Ax,f is non-splitting.

The parenthetical remarks in the definition follow from Theorem 4.5.2. If we refer
to X as either internally splitting or internally non-splitting, we tacitly assume that
X has at least one irreducible automorphism.

One might think of X as being “rigid” or “incompressible” if the only automor-
phisms of X are irreducible, since in this case the only way to move points in X
while bijectively preserving the order is to slide every point an equal distance in one
direction (i.e., via an irreducible automorphism). From this view, being internally
non-splitting is a semi-rigidity property: while an internally non-splitting X may
have non-irreducible automorphisms, such automorphisms can only move points
locally. The following theorem makes this precise. It says that any irreducible
automorphism must move a given x ∈ X outside of its bubble b(x).

Theorem 4.5.6. Suppose that X is internally non-splitting. Then for any irre-
ducible automorphism f : X → X and x ∈ X, we have x ̸∼b f(x).

Proof. We assume that f is increasing. Suppose toward a contradiction there is
x ∈ X such that x ∼b f(x). Let A = Ax,f and let Am = fm[A]. Then A is non-
splitting, and we have X ∼= · · ·+A−1+A0+A1+A2+ · · · ∼= ZA. Let xm = fm(x),
so that Am = [xm, xm+1).

Let g be a bounded bump such that x, f(x) ∈ O(g). We assume g is increasing
on O(g). Without loss of generality, we may assume O(g) is bounded to the right
in X, so that there is some maximal m ∈ N such that O(g) ∩ Am ̸= ∅. Since
f(x) ∈ O(g), we must have m ≥ 1.

Since g is irreducible on O(g), we may choose k large enough so that gk(x) ∈ Am.
Since xm+1 ̸∈ O(g), we have g(xm+1) = xm+1. Thus we have

gk[[x, xm+1)] = [gk(x), gk(xm+1))
= [gk(x), xm+1).

Since xm ≤ gk(x) by choice of k, it follows that gk[[x, xm+1)] ⊆ [xm, xm+1) = Am.
But [x, xm+1) ∼= A0 +A1 + · · ·+Am, so this gives that A0 +A1 + · · ·+Am ⩽c Am,
which shows (m + 1)A ⩽c A. Since m ≥ 1 we get 2A ⩽c A, so that 2A ∼= A by
Corollary 3.2.6, contradicting that X is internally non-splitting. □

An intuitive view of the bubble condensation ∼b is that it “mods out” any non-
irreducibility in X, since it condenses to a point any (closed) interval in X that
can be traversed by the iterates of a non-irreducible automorphism of X. Theorem
4.5.6 implies that when X is non-splitting, this condensation does not condense X
itself to a point, since x and f(x) lie in different bubbles whenever f is irreducible.
It should follow that the induced action of Aut(X) on X/∼b is both non-trivial and
purely irreducible. The following theorem make this intuition precise.

Theorem 4.5.7. Suppose that X is internally non-splitting. Let G = Aut(X) and
consider the induced action G ↷ X/∼b. Let Nb denote the kernel of this action, so
that Nb = {f ∈ G : for all x ∈ X, f(x) ∼b x}.

Then:
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1. f ∈ Nb if and only if f is a non-irreducible automorphism of X,
2. G/Nb acts freely by irreducible automorphisms on X/∼b,
3. G/Nb is isomorphic to a subgroup H ≤ (R,+).

Proof. (1.) If f is an irreducible automorphism of X, then by Theorem 4.5.6 we
have that x ̸∼b f(x) for any x ∈ X, so that f ̸∈ Nb. Conversely, suppose f ∈ G is
non-irreducible, and fix x ∈ X. We show that x ∼b f(x). This holds if x = f(x),
so suppose that x is not a fixed point of f . Consider the orbital Of (x). Let g
denote the bump corresponding to this orbital. That is, g is the map that agrees
with f on Of (x) and is the identity outside of this interval. Notice that g is indeed
an automorphism of X, so that g ∈ G. By definition of g we have O(g) = Of (x).
Since f is non-irreducible, O(g) is bounded in X, i.e. g is a bounded bump. Since
O(g) = Of (x) we have x, f(x) ∈ O(g), which gives x ∼b f(x), as claimed. Since x
was arbitrary, it follows f ∈ Nb.

(2.) Since G/Nb acts faithfully on X/∼b, we may identify G/Nb with a subgroup
of Aut(X/∼b). We check that it acts irreducibly. Then by Theorem 4.4.3, if we
equip G/Nb with the pointwise order from the action G/Nb ↷ X/∼b, this action is
an ordered action, and hence free.

Suppose fNb ∈ G/Nb and fNb ̸= 1Nb. Then f is an irreducible automorphism of
X by (1.). For b(x) ∈ X/∼b we have fNbb(x) = fb(x) = b(fx). Thus for n ∈ Z we
have (fNb)

nb(x) = b(fnx). Since these iterates are pairwise distinct (by Theorem
4.5.6) and f is irreducible on X, it follows fNb is irreducible on X/∼b.

(3.) Viewing G/Nb as a subgroup of Aut(X/∼b), we have by (2.) that it is
irreducible. The conclusion follows by Corollary 4.4.5. □

Note: For the remainder of this subsection, we assume that X is internally non-
splitting. We also adopt the notation of Theorem 4.5.7, letting G denote Aut(X)
and Nb denote the kernel of the induced action G ↷ X/∼b.

Our next goal is to establish a fact (Corollary 4.5.13 below) that we will use to
prove Lindenbaum’s theorems in the next subsection. Recall from Examples 3.3.3,
3.3.4, and 3.3.5 that an isomorphism of the form i : nA → nB need not witness
directly that A ∼= B, in the sense that the images of the individual copies of A in nA
need not coincide with any of the copies of B in nB. By passing to an isomorphism
ι : ZA → ZB, Corollary 4.5.13 will allow us to correct any “misalignment” between
the copies of A and B in the original isomorphism when A and B are non-splitting,
and conclude A ∼= B. Once we can make such corrections, we will more generally
be able to cancel and divide over isomorphisms of the form nA ∼= mB just as if A
and B were real numbers.

We adopt the following notation for the quotient classes fNb ∈ G/Nb.

Notation 4.5.8. For f ∈ G, write f̂ for the quotient class fNb ∈ G/Nb.

Since G/Nb is isomorphic to a subgroup of (R,+), we can certainly cancel and

divide in G/Nb. That is, if f̂ , ĝ ∈ G/Nb and for some nonzero n ∈ Z we have

f̂n = ĝn, then f̂ = ĝ. Similarly, if for some m,n ∈ N with gcd (m,n) = 1 we have

f̂n = ĝm, then there is ĥ ∈ G/Nb such that ĥm = f̂ and ĥn = ĝ.
These facts are the formal analogues of the cancellation and division theorems.

Corollary 4.5.13 below will allow us to connect these formal analogues to the the-
orems themselves. It says that for any irreducible increasing f ∈ G and x ∈ X,

the order type of the segment Ax,f depends only on the class f̂ and the orbit Gx.
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We will prove the corollary by way of Lemmas 4.5.11 and 4.5.12 below, but first we
need to introduce some notation.

The following definition describes a decomposition of a bubble condensation class
b(x) in terms of the representative x. We allow x in this definition to range over
the completion X of X, but we emphasize that b(x) still refers to a set of points
in X. For a gap x ∈ X \X, by b(x) we mean {y ∈ X : y ∼b x}, where we define
y ∼b x if there is a bounded bump f ∈ G such that x, y ∈ O(f) (equivalently, such
that fn(y) < x < fn+1(y) for some n ∈ Z).

Formally, we may define a relation ∼b on X by the rule x ∼b y if there is a

bounded bump f ∈ G (that we view as an automorphism of X) such that x, y ∈
O(f). One checks that ∼b is a G-condensation of X, and that for x ∈ X we have

b(x) = b(x)∩X. For a gap x ∈ X \X, we define b(x) = b(x)∩X. It can be checked
that this definition agrees with the one given in the previous paragraph.

Definition 4.5.9. Fix x ∈ X. Define

Lx = {y ∈ b(x) : y < x}
Rx = {y ∈ b(x) : x < y}.

Thus for any x ∈ X, we have b(x) ∼= Lx + {x}+Rx, where {x} is understood to
be ∅ if x is a gap.

For an increasing irreducible automorphism f and a given x ∈ X we have that
Ax,f = [x, f(x)). Observe that Ax,f ∩ b(x) = {x} ∪Rx and Ax,f ∩ b(f(x)) = Lf(x).
Thus we have Ax,f

∼= {x} + Rx +M + Lf(x) where M is the union of all bubbles
b(y) between b(x) and b(f(x)). We introduce notation for such intervals.

Definition 4.5.10. Fix x ∈ X and an increasing irreducible f ∈ G. Define

[Ax,f ] = b(x) ∪Ax,f ∪ b(f(x))
(Ax,f ) = Ax,f \ (b(x) ∪ b(f(x))).

Thus we have

[Ax,f ] ∼= Lx +Ax,f + {f(x)}+Rf(x)
∼= Lx + {x}+Rx + (Ax,f ) + Lf(x) + {f(x)}+Rf(x)
∼= b(x) + (Ax,f ) + b(f(x)).

With this notation in hand we can state and prove our lemmas.

Lemma 4.5.11. Fix x ∈ X and an increasing irreducible f ∈ G. Then we have
Lx

∼= Lf(x) and Rx
∼= Rf(x).

Proof. Since f maps b(x) isomorphically onto b(f(x)) and sends x to f(x), it maps
Lx onto Lf(x) and Rx onto Rf(x). □

The proof above is informal in the sense that one or both of Lx and Rx may be
empty (or even all three of Lx, Rx, and {x} when x is a gap). But since f [b(x)] =
b(f(x)) for all x ∈ X, and more generally f [b(x)] = b(f(x)) for all x ∈ X, it follows
that Lx is empty if and only if Lf(x) is empty, and likewise for Rx and Rf(x), and
{x} and {f(x)}.

Notice that if f ∈ G and g ∈ f̂ , then f is increasing and irreducible if and only
if g is increasing and irreducible. This is because f is increasing and irreducible

on X if and only if f̂ = ĝ is increasing and irreducible on X/∼b if and only if g is
increasing and irreducible on X. Thus for any x, y ∈ X, the interval Ax,f has the
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increasing form [x, f(x)) if and only if Ay,g has the increasing form [y, g(y)). We
will use this observation repeatedly in what follows without further comment.

Lemma 4.5.12. Fix x ∈ X and an increasing irreducible f ∈ G. Then:

1. The order type of Ax,f depends only on the quotient class f̂ of f . That is,

for any g ∈ f̂ we have Ax,g
∼= Ax,f .

2. The order type of Ax,f depends only the orbit Gx of x. That is, for any
y ∈ Gx we have Ay,f

∼= Ax,f .

Proof. (1.) Fix g ∈ f̂ . Then g = fh for some h ∈ Nb. We have

Ax,f
∼= {x}+Rx + (Ax,f ) + Lf(x)

and

Ax,g = Ax,fh
∼= {x}+Rx + (Ax,fh) + Lfh(x).

By Lemma 4.5.11, we have Lx
∼= Lf(x)

∼= Lfh(x). Thus to verify Ax,f
∼= Ax,g it

suffices to check that (Ax,f ) ∼= (Ax,fh).
We claim that in fact (Ax,f ) = (Ax,fh). Indeed, (Ax,f ) consists of the points in

X strictly between the bubbles b(x) and b(f(x)) and (Ax,fh) consists of the points
strictly between b(x) and b(fh(x)). But since h ∈ Nb we have that b(h(x)) = b(x),
so that b(fh(x)) = b(f(x)). It follows (Ax,f ) = (Ax,fh) as claimed.

(2.) Fix y ∈ Gx. Then y = gx for some g ∈ G. By definition we have

Ax,f = [x, f(x))
Ay,f = [gx, fg(x)).

Thus g−1Ay,f = [x, g−1fg(x)) = Ax,g−1fg. Since g−1 is an automorphism of X,
this gives Ax,g−1fg

∼= Ay,f .

Observe that ĝ−1fg = ĝ−1f̂ ĝ = ĝ−1f̂ ĝ = f̂ , where the last equality follows from
the commutativity of G/Nb. Thus by (1.) we have Ax,f

∼= Ax,g−1fg, which gives
Ax,f

∼= Ay,f . □

Corollary 4.5.13. Fix x ∈ X and an increasing irreducible f ∈ G. Then for any

g ∈ f̂ and y ∈ Gx we have Ax,f
∼= Ay,g.

Proof. Immediate from Lemma 4.5.12. □

We conclude this subsection with a proposition that can be viewed as a kind of
converse to Lindenbaum’s theorems.

Proposition 4.5.14. Fix x, y ∈ X and irreducible automorphisms f, g ∈ G. Let
A = Ax,f and B = Ay,g. Suppose that y ∈ Gx and for some m,n ∈ Z with m,n ≥ 1

we have f̂n = ĝm. Then nA ∼= mB.

Proof. We assume that f is increasing. The decreasing case is obtained by sym-
metrizing the argument along with the previous lemmas.

From the definitions of Ax,f and Ax,fn we have

Ax,fn = [x, fn(x)) ∼= nAx,f = nA.

Likewise we have

Ay,gm = [y, gm(x)) ∼= mAy,g = mB.

Since f̂n = f̂n = ĝm = ĝm and y ∈ Gx we have Ax,fn ∼= Ay,gm by Corollary 4.5.13.
The proposition follows. □
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4.6. Proofs of the cancellation and division theorems. We now prove Lin-
denbaum’s cancellation and division theorems. The proof of each theorem cases out
on whether the orders A and B named in the theorem are splitting. In the splitting
cases, the proofs are easy. The non-splitting cases use the machinery developed in
this section.

Theorem 4.6.1. (Lindenbaum’s cancellation theorem) Suppose that n is a nonzero
natural number and A and B are linear orders. If nA ∼= nB, then A ∼= B.

Proof. The theorem is clearly true when n = 1, so assume that n > 1. Then since
nA ∼= nB, we have in particular nA ⩽c nB ⩽c nA. By Lemma 4.5.3 it follows that
A is splitting if and only if B is splitting.

If A and B are splitting, then A ∼= nA ∼= nB ∼= B, and we are done.
So suppose that A and B are non-splitting, and fix an isomorphism i : nA → nB.

Writing A = A0 + A1 + · · · + An−1 and B = B0 + B1 + · · · + Bn−1, we will think
of i as identifying the orders nA and nB by identifying each copy Ak of A with its
image i[Ak]. It need not be true that any such image coincides with some Bl in
nB. That is, i may not witness A ∼= B directly.

Having identified nA and nB, we identify the orders ZA ∼= ZnA and ZB ∼= ZnB
by writing

ZA = · · ·+ (A0 +A1 + · · ·+An−1) + (An +An+1 + · · ·+A2n−1) + · · ·

ZB = · · ·+ (B0 +B1 + · · ·+Bn−1) + (Bn +Bn+1 + · · ·+B2n−1) + · · ·
and identifying each copy (Ank+ · · ·An(k+1)−1) of nA with the corresponding copy
(Bnk + · · · + Bn(k+1)−1) of nB. Let X denote ZA = ZB. Since A and B are
non-splitting, X is internally non-splitting.

Having identified ZA and ZB with X, we may refer to points in x ∈ X either
by their ZA coordinates (n, a) or their ZB coordinates (n, b).

Let G denote Aut(X). Let f ∈ G denote the “+A” map on X, i.e. the map
f : ZA → ZA defined by f(n, a) = (n+ 1, a). Likewise let g ∈ G denote the “+B”
map g : ZB → ZB defined by g(n, b) = (n+1, b). Then f and g are increasing and
irreducible, and we have Ax,f = A0

∼= A and Bx,g = B0
∼= B.

It may be that A has a left endpoint, a right endpoint, both endpoints, or neither.
Assume first that A has a left endpoint. Then nA has a left endpoint as well. Since
nB ∼= nA, it follows that nB has a left endpoint, and hence so does B. Let x ∈ X
denote the left endpoint of A0. From our identification above, it follows that x is
also the left endpoint if B0. Moreover, fn(x) is the left endpoint of An, g

n(x) is
the left endpoint of Bn. By our identification these points coincide, i.e. we have
fn(x) = gn(x).

Now consider f̂ and ĝ inG/Nb. Since f
n(x) = gn(x) we have b(fn(x)) = b(gn(x))

and hence f̂n(b(x)) = ĝn(b(x)). Since G/Nb acts freely on X/∼b by Theorem 4.5.7,

this implies f̂n = ĝn. Since G/Nb is isomorphic to a subgroup of R (also by

Theorem 4.5.7), this gives f̂ = ĝ. By Corollary 4.5.13 (since of course x ∈ Gx), we
have Ax,f

∼= Ax,g i.e. A ∼= B.
If A does not have a left endpoint but has a right endpoint, then the same holds

for B. In this case we let x denote the right endpoint of A−1, which coincides with
the right endpoint of B−1. The argument above goes through verbatim, except
in this case we produce an isomorphism between A′ = Ax,f and B′ = Ax,g. The
orders A′, B′ are obtained from A0 and B0 by deleting their right endpoints and
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appending on the left the right endpoints of A−1 and B−1. Since clearly A′ ∼= B′

implies A ∼= B, we are done in this case as well.
Finally, if A has neither a left nor right endpoint, the same holds for B. In this

case there is a gap between each consecutive copy of A in ZA. Let x denote the gap
between A−1 and A0 (which coincides with the gap between B−1 and B0). Then
the above argument goes through verbatim, since Corollary 4.5.13 applies to gaps
in X as well as points in X, and shows that A ∼= B, since in this case we have again
Ax,f = A and Ax,g = B. □

Theorem 4.6.2. (Lindenbaum’s division theorem) Suppose that n and m are
nonzero natural numbers with gcd (n,m) = 1, and A and B are linear orders. If
nA ∼= mB, then there is a linear order C such that A ∼= mC and B ∼= nC.

Proof. We may assume n < m without loss of generality. If n = 1, then the theorem
follows immediately by letting C = B. So assume n > 1. Then since nA ∼= mB we
have in particular that nA ⩽c mB ⩽c nA. By Lemma 4.5.3, A is splitting if and
only if B is splitting.

If A and B are splitting, then we have A ∼= mA ∼= nA ∼= mB ∼= nB ∼= B. The
theorem follows immediately by again letting C = B (or just as well, C = A).

So assume that A and B are non-splitting. Fix an isomorphism i : nA → mB.
We write nA = A0 + · · · + An−1 and mB = B0 + · · · + Bm−1. As in the proof of
the cancellation theorem, we view i as identifying nA and mB by identifying each
term Ak with i[Ak]. Writing

ZA = · · ·+ (A0 +A1 + · · ·+An−1) + (An +An+1 + · · ·+A2n−1) + · · · ,

ZB = · · ·+ (B0 +B1 + · · ·+Bm−1) + (Bm +Bm+1 + · · ·+B2m−1) + · · · ,

we identify ZA and ZB by identifying each copy (Ank + · · ·An(k+1)−1) of nA with
the corresponding copy (Bmk + · · · + Bm(k+1)−1) of mB. Write X for ZA = ZB.
Since A and B are non-splitting, X is internally non-splitting. Let G = Aut(X).

We assume A has a left endpoint; the variations of the following argument when
A has a right endpoint, or neither endpoint, are similar to those for the cancellation
theorem. Then B has a left endpoint as well. Let x denote the left endpoint of
A0, which by our identification coincides with the left endpoint of B0. Let f and g
denote the “+A” and “+B” maps on X, respectively. Then f and g are increasing
and irreducible, and we have Ax,f = A0

∼= A and Ax,g = B0
∼= B.

Observe that we have fn(x) = gm(x) since fn(x) is the left endpoint of An,
gm(x) is the left endpoint of Bm, and these points coincide by our identification.

It follows that f̂n = ĝm. Since G/Nb is isomorphic to a subgroup H of (R,+) and

gcd (n,m) = 1, we can find ĥ ∈ G/Nb such that ĥm = f̂ and ĥn = ĝ.
More explicitly, fix an embedding ϕ : G/Nb → (R,+). By the proof of the

Hölder-Conrad Theorem 4.4.4, we can choose ϕ(f̂) = 1. Then since nϕ(f̂) =
ϕ(fn) = ϕ(ĝm) = mϕ(ĝ), we must have ϕ(ĝ) = n

m . Since gcd (n,m) = 1, we have
1
m ∈ ⟨1, n

m ⟩ ≤ ϕ[G/Nb]. Thus there is ĥ ∈ G/Nb such that ϕ(ĥ) = 1
m . It follows

ĥm = f̂ and ĥn = ĝ, as desired.
Let C = Ax,h. By definition of the segment Ax,h we have Ax,hm ∼= mAx,h = mC.

But since ĥm = f̂ , we have Ax,hm ∼= Ax,f by Corollary 4.5.13, which gives mC ∼= A.
Similarly, nC ∼= Ax,g

∼= B. □
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5. Structure theorems

In this section we give a structural analysis of orders of the form X = ZA
casing out on whether the segment A is splitting or non-splitting, and extract a
characterization of A in each case. One can view these characterizations as applying
to the orders that appear in Lindenbaum’s theorems, since in the proofs we work
over the order X = ZA ∼= ZB. Once in hand, we will use these characterizations
to construct very general examples of orders A and B satisfying an isomorphism
of the form nA ∼= mB. In the next section, we will use them again in our proof of
Aronszajn’s theorem.

If A is non-splitting, then Theorem 4.5.7 connects the algebraic structure of
Aut(ZA) to arithmetic in (R,+): in this case, ZA is internally non-splitting, so
that Aut(ZA) has a quotient that is isomorphic to a subgroup H of (R,+). We will
use this fact to connect the order structure of ZA to the order (R, <). Specifically,
we will show that ZA is isomorphic to a replacement of R up to the orbit equivalence
relation of the group H.

For A a splitting order, we did not need an analogue of Theorem 4.5.7 or the
other results of Subsection 4.5 to prove Lindenbaum’s theorems. However, we will
need such analogues to prove our structural characterization of ZA in this case.
This requires that we dip into the theory of primitive actions on linear orders.
Much of this theory was developed originally by Holland, and later McCleary. We
will develop enough of it to prove an analogue of Theorem 4.5.7 in the internally
splitting case, and from this get a structure theorem for ZA when A is splitting.

Since for our purposes we need only consider orders of the form X = ZA, we will
not always prove the most general versions of Holland’s and McCleary’s results. See
[4, Ch. 4] for more. The advantage of our proofs is that they follow our arithmetic
approach, and in particular do not depend explicitly on the theory of lattice-ordered
groups.

5.1. Transitive actions and primitive actions. An action G ↷ X is tran-
sitive if X consists of a single G-orbit, and primitive if X admits no nontrivial
G-condensations (see Definitions 5.1.1 and 5.1.5). We show that an order X of the
form ZA can always be represented as a replacement of a primitive order R up to
the orbit equivalence relation of the induced action Aut(X) ↷ R. Moreover, we
have the following dichotomy: when A is non-splitting, the orbits Gr of the induced
action are uniquely transitive, and in the splitting case, doubly transitive. In this
section we define these notions and prove some basic facts about them.

5.1.1. Types of transitivity.

Definition 5.1.1. An action G ↷ X is transitive if for all x, y ∈ X there exists a
g ∈ G such that gx = y.

An order X is transitive if the action Aut(X) ↷ X is transitive.

Equivalently, an action G ↷ X is transitive if Gx = X for some (or any) x ∈ X.
For any action G ↷ X and x ∈ X, G acts transitively on the orbit Gx.

Definition 5.1.2. An action G ↷ X is uniquely transitive if for all x, y ∈ X there
is exactly one g ∈ G such that gx = y.

An order X is uniquely transitive if Aut(X) ↷ X is uniquely transitive.
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For example, if H is a subgroup of (R,+), then H’s action on itself by addition
is uniquely transitive, since for all h, h′ ∈ H there is a unique g ∈ H such that
g+h = h′, namely g = h′ −h. We will see later that all uniquely transitive actions
have this form.

Definition 5.1.3. An action G ↷ X is doubly transitive if for all u, v, x, y ∈ X
with u < v and x < y, there is g ∈ G such that gu = x and gv = y.

An order X is doubly transitive if Aut(X) ↷ X is doubly transitive.

Said another way, an action G ↷ X is doubly transitive if whenever [u, v] and
[x, y] are closed intervals in X, there is g ∈ G such that g[u, v] = [x, y].

For example, R is a doubly transitive order. This follows from the fact that
any open interval I of R is isomorphic to R, and hence to any other open interval.
Thus if u < v and x < y are points in R, there are isomorphisms between (−∞, u)
and (−∞, x), (u, v) and (x, y), and (v,∞) and (y,∞). Stitching such isomorphisms
together (along with the rules u 7→ x and v 7→ y) yields an automorphism g : R → R
sending u to x and v to y.

5.1.2. Primitive actions.

Definition 5.1.4. Suppose G ↷ X is an action. A G-condensation ∼ is trivial if
either

i. for all x, y ∈ X we have x ∼ y, or
ii. for all x, y ∈ X, x ∼ y implies x = y.

Thus, a G-condensation ∼ is nontrivial if there is a condensation class which is
neither a singleton nor all of X.

We will say that a trivial condensation of type (i.) condenses X to a point, and
call a trivial condensation of type (ii.) a singleton condensation.

Definition 5.1.5. An action G ↷ X is primitive if the only G-condensations on
X are the trivial condensations.

An order X is primitive if Aut(X) ↷ X is primitive.

Primitive actions G ↷ X when G is a so-called lattice subgroup of Aut(X) were
classified by McCleary [8] [9], building on work of Holland [5]. See [4, Chapter 4] for
an overview. We will develop versions of McCleary’s results sufficient to prove our
representation theorems. Our proofs will not rely explicitly on the lattice structure
of Aut(X).

If G ↷ X is an action and ∼ and ≈ are G-condensations, we say that ∼ extends
≈ if x ≈ y implies x ∼ y for all x, y ∈ X, and ∼ strictly extends ≈ if moreover
x ∼ y and x ̸≈ y for some x, y ∈ X. We also say that ≈ is a sub-condensation of
∼, or strict sub-condensation of ∼, if ∼ extends or strictly extends ≈ respectively.
We will be interested in condensations whose only strict extensions are trivial.

Definition 5.1.6. Suppose G ↷ X is an action. A G-condensation ∼ is maximal
if any G-condensation strictly extending it condenses X to a point.

A given action need not admit a maximal condensation. When it does, the
induced action on the condensed order is primitive.

Proposition 5.1.7. Suppose G ↷ X is an action and ∼ is a G-condensation.
Then ∼ is maximal if and only if the induced action G ↷ X/∼ is primitive.
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Proof. Suppose ∼ is maximal, and let c denote the condensation map for ∼, and
suppose ≈ is a G-condensation on X/∼ that is not the singleton condensation. We
claim ≈ condenses X/∼ to a point. The corresponding relation ≈′ on X defined
by x ≈′ y if c(x) ≈ c(y) is a G-condensation of X. Observe that ≈′ extends ∼, and
in fact strictly extends ∼, since ≈ is not the singleton condensation on X/∼. By
maximality of ∼ we have that ≈′ condenses X to a point. It follows ≈ condenses
X/∼ to a point.

Conversely, suppose G ↷ X/∼ is primitive. Reversing the above shows that
any G-condensation ≈′ that strictly extends ∼ can be lifted to a non-singleton
condensation ≈ on X/∼. Hence ≈ condenses X/∼ to a point, and it follows ≈′

condenses X to a point. □

We will show that orders of the form X = ZA always have maximal Aut(X)-
condensations. The nature of the resulting primitive action of Aut(X) on the
condensed order will depend on whether A is splitting or non-splitting.

The following is a fundamental lemma that we will use several times in the course
of proving our representation theorems. It says that an action G ↷ X is primitive
if and only if the orbit Gx of an arbitrary point x in the completion X of X is
dense in X.

Lemma 5.1.8. (cf. [4, Theorem 4.1.1]) Suppose that G ↷ X is an action, and
consider the extended action G ↷ X on the completion of X. The following are
equivalent:

i. G ↷ X is primitive,
ii. G ↷ X is primitive,
iii. either for every x ∈ X, the orbit Gx is dense as a linear order and also

dense in X, or for every x ∈ X we have Gx = X = X ∼= Z.

Proof. (i.) ⇒ (ii.): Suppose G ↷ X is primitive and ∼ is a G-condensation of X.

Let ∼′ denote the restriction of ∼ to X. Observe that ∼′ is a G-condensation of
X: if x, y ∈ X, then gx, gy ∈ X as well, and we have x ∼′ y iff x ∼ y iff gx ∼ gy iff
gx ∼′ gy.

By primitivity, either ∼′ condenses X to a point or ∼′ is the singleton conden-
sation on X.

In the first case it must be that ∼ also condenses X to a point: if x, y ∈ X with
x < y, then there are points x′, y′ ∈ X such that x′ ≤ x < y ≤ y′, and since x′ ∼ y′

we must have x ∼ y.
In the second, it must be that ∼ is the singleton condensation on X. Indeed, if

there were points x < y in X with x ∼ y, then it cannot be x, y both belong to X,
since ∼′ is the singleton condensation. If one does, say x, then since X is dense in
X we can find z ∈ X such that x < z < y, which gives x ∼′ z, contradicting that
∼′ is the singleton condensation. And if neither of x, y belong to X, then we can
find z ∈ X with x < z < y. But then z ∼ y and z ∈ X, a contradiction again by
the same argument.

(ii.) ⇒ (iii.): Suppose G ↷ X is primitive, and fix x ∈ X. Suppose first that

the orbit Gx is not dense (as a linear order). We prove that Gx = X = X ∼= Z.
For the remainder of this argument, any interval notation refers to intervals in

X. For example, given a, b ∈ X, we use [a, b) to denote {y ∈ X : a ≤ y < b}.
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Since Gx is not dense we can find points gx, hx ∈ Gx such that gx < hx and
Gx∩ [gx, hx) = {gx} (i.e. hx is the successor of gx in Gx). It follows Gx∩ [x, kx) =
{x}, where k = g−1h. Let I = [x, kx).

We claim that for every g ∈ G, either gI = I or gI ∩ I = ∅. (We say that I is a
G-block ; compare to Definition 4.1.6). If not, we can find g ∈ G such that gI∩I ̸= ∅
but gI ̸= I. It follows that either x < gx < kx, x < gkx < kx, gx < x < gkx,
or gx < kx < gkx. The first two inequalities contradict that Gx ∩ [x, kx) = {x}.
The latter two imply x < g−1x < kx and x < g−1kx < kx, likewise contradictions.
Hence I = [x, kx) is a G-block, as claimed.

Define a relation ∼ on X by the rule y ∼ z if there is g ∈ G such that y, z ∈ gI, or
y = z. We claim that ∼ is a G-condensation. It is clearly reflexive and symmetric.
It is convex since I is an interval. For transitivity, suppose w ∼ y ∼ z for some
w, y, z ∈ X. Since ∼ is convex we may assume without loss of generality that
w < y < z. Thus there exist g, g′ ∈ G such that w, y ∈ gI and y, z ∈ g′I.
Since y ∈ gI ∩ g′I we have g−1y ∈ I ∩ g−1g′I. Since I is a G-block, this implies
I = g−1g′I, which gives gI = g′I and thus w ∼ z, establishing transitivity. Thus ∼
is a condensation of X. It is a G-condensation since for any y, z ∈ X and g, h ∈ G
we have y, z ∈ gI if and only if hy, hz ∈ hgI.

Since G ↷ X is primitive, ∼ is trivial. Since ∼ does not condense X to a point
(e.g. x ̸∼ kx), ∼ is the singleton condensation. It follows [x, kx) = {x}. Thus kx is
the successor of x, not only in Gx, but in X. It follows that [knx, kn+1x) = {knx}
for every n ∈ Z, so that J = {knx : n ∈ Z} is an interval in X isomorphic to Z.

We claim that J is a G-block. Indeed, gJ is a convex copy of Z for any g ∈ G. If
gJ ∩J ̸= ∅ it must be that gJ = J , since two intervals that are isomorphic to Z can
intersect only if they coincide. If we define a relation ∼′ as above, now with respect
to J instead of I, then by the same proof we get that ∼′ is a G-condensation of X.
Since it is clearly not trivial (J is a condensation class), it must condense X to a
point. Thus Gx = X = X = J ∼= Z, as desired.

Now suppose that Gx is dense as a linear order. We check Gx is dense in X.
Define a relation ∼ on X by the rule y ∼ z if [{y, z}] ∩Gx is either empty or a

singleton. We claim that ∼ is a G-condensation. Clearly, ∼ is reflexive, symmetric,
and convex. For transitivity, suppose w ∼ y ∼ z for some w, y, z ∈ X. As before,
we may suppose w < y < z. Since w ∼ y and y ∼ z, we can have |[{w, z}]∩Gx| ≥ 2
only if |[{w, z}] ∩ Gx| = 2. If this were the case, say [{w, z}] ∩ Gx = {p, q}, then
there is no point in Gx between p and q, contradicting the density of Gx. Thus
|[{w, z}] ∩ Gx| ≤ 1, so that w ∼ z, which gives transitivity and shows ∼ is a
condensation. Since [{y, z}] intersects Gx in at most one point if and only if the
same is true of [{gx, gy}] for any g ∈ G, it is moreover a G-condensation, as claimed.

Since no two points in Gx are ∼-related, by primitivity ∼ must be the singleton
condensation. It follows that Gx is dense in G.

(iii.) ⇒ (i.): Suppose we have (iii.). If Gx = X ∼= Z for some (equivalently,

every) x ∈ X, then there is g ∈ G generating G, so that X = {gnx : n ∈ Z}.
Suppose ∼ is a G-condensation. If gnx ∼ gmx for some n < m, it follows by the
convexity of ∼ that gnx ∼ gn+1x, which gives x ∼ gx. It follows x ∼ gnx for every
n ∈ Z, i.e. ∼ condenses X to a point. Thus in all cases ∼ is trivial, and hence
G ↷ X is primitive.

So suppose Gx is dense and dense in X for every x ∈ X. Suppose toward a
contradiction that there is a G-condensation ∼ of X that is nontrivial, and let c
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denote the condensation map. Then there are points y < z in X such that y ∼ z
and such that the condensation class c(y) = c(z) is not equal to X. Without loss
of generality we may assume that c(y) is not an initial segment of X. Then c(y)
has a left endpoint w in X (it may be that w ∈ X \X). Since Gw is dense in X,
there is g ∈ G such that y < gw ≤ z. It must be that gw is the left endpoint of
gc(y) = c(gy), so that y ̸∈ c(gy), and in particular c(y) ̸= c(gy). But the classes
c(y) and c(gy) must intersect, as either z ∈ c(gy) or c(gy) ⊆ c(y), contradicting
that ∼ is a condensation.

Thus every G-condensation must be trivial in this case as well, as desired. □

It is necessary in Lemma 5.1.8 that we consider orbits of points in X and not
just X. There exist non-primitive actions G ↷ X in which Gx is dense and dense
in X for every x ∈ X; it may even be that such an action is transitive.

In general, if G ↷ X is an action and for some x ∈ X the orbit Gx is dense
in X, then the restricted action G ↷ Gx determines the original action G ↷ X.
Indeed, G ↷ Gx determines G ↷ Gx in the usual way, and Gx = X since Gx is
dense in X. Thus G ↷ Gx not only determines the original action G ↷ X but also
its extension to X.

Corollary 5.1.9. Suppose G ↷ X is an action. The following are equivalent:

i. G ↷ X is primitive,
ii. for every x ∈ X, Gx is dense in X and the restricted action G ↷ Gx is

primitive,
iii. there exists x ∈ X such that Gx is dense in X and the restricted action

G ↷ Gx is primitive.

Proof. If G ↷ X is primitive, then for any x ∈ X, Gx is dense in X by Lemma
5.1.8. Thus Gx = X, so that the action G ↷ X coincides with G ↷ Gx. But
G ↷ X is primitive (also by the lemma), so that G ↷ Gx is primitive, which gives
G ↷ Gx is primitive (also by the lemma).

Thus (i.) ⇒ (ii.), and (ii.) ⇒ (iii.) is trivial. For (iii.) ⇒ (i.), given such an
x we have G ↷ Gx is primitive by the lemma. But Gx = X, so that G ↷ X is
primitive (again by the lemma). □

We adopt the following terminology from Glass’s book [4].

Definition 5.1.10. An action G ↷ X is transitively derived if it is primitive and
X ̸∼= Z.

If G ↷ X is transitively derived, then for any x ∈ X the restricted action
G ↷ Gx determines the original action (and its extension to X), since by Lemma
5.1.8 we have that Gx is dense and dense in X. Said another way, the orbit
equivalence relation of the action G ↷ X, which we can also extend to X, partitions
X into subsets each of which is dense and also dense in X. Moreover, all of the
actions G ↷ Gx are primitive by Corollary 5.1.9. We may think of the action
G ↷ X as being “derived” from any of the primitive, transitive actions G ↷ Gx.
Conversely (and also by Lemma 5.1.8), if G ↷ X is a primitive and transitive action
(so that X = Gx for any x ∈ X) and X is dense, then G ↷ X is also primitive and
hence transitively derived. In this sense, the study of transitively derived actions
G ↷ X reduces to the study of primitive, transitive actions G ↷ Gx.
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It turns out that in many natural situations (and in particular for primitive
actions of the form Aut(X) ↷ X), the orbits of a primitive action are either all
uniquely transitive or all doubly transitive.

Definition 5.1.11. A transitively derived action G ↷ X is uniquely transitively
derived (respectively, doubly transitively derived) if for all x ∈ X the restricted
action G ↷ Gx is uniquely transitive (respectively, doubly transitive).

An order X is uniquely transitively derived (respectively, doubly transitively de-
rived) if Aut(X) ↷ X is uniquely transitively derived (respectively, doubly transi-
tively derived).

We have the following dichotomy.

Theorem 5.1.12. (Holland’s dichotomy theorem) Suppose X is a primitive order.
Then exactly one of the following holds:

i. X is uniquely transitively derived, or X = Z,
ii. X is doubly transitively derived.

Moreover, in case (i.), Aut(X) is isomorphic to a subgroup H ≤ (R,+), X is
isomorphic to a suborder X ′ of (R, <) closed under the action of H by addition,
and the action Aut(X) ↷ X is isomorphic to H ↷ X ′.

We will prove a more general version of Theorem 5.1.12 for orders of the form
X = ZA using our arithmetic approach, and derive Holland’s dichotomy as a con-
sequence. Case (i.) in the theorem corresponds to the case when X is internally
non-splitting (i.e. when A is non-splitting), and (ii.) to the internally splitting
case. In this sense, Theorem 5.1.12, and more generally the distinction between
uniquely and doubly transitive actions, can be viewed as another expression of the
fundamental dichotomy between splitting and non-splitting orders.

5.2. Representing an order X via an irreducible action H ↷ X. In this
subsection we describe our general approach to representing orders of the form
X = ZA, and then state and prove our representation theorem in the case when A
is non-splitting. In this case, by Theorem 4.5.7 we have that Aut(X)/Nb acts freely
by irreducible automorphisms on X/∼b. By the Hölder-Conrad theorem 4.4.4, we
can identify Aut(X)/Nb with a subgroup H of (R,+). Thus the top part of the
action Aut(X) ↷ X with respect to the condensation ∼b is an irreducible action
H ↷ X. This action will allow us to represent X as a replacement of R up to the
orbit equivalence relation of H.

We will actually work in the more general setting in which H is an arbitrary
subgroup of (R,+) (not necessarily of the form Aut(X)/Nb) acting by irreducible
automorphisms on X, and obtain a representation of X as a replacement of R up to
the orbit equivalence relation of H. We will need this more general representation
theorem when proving Aronszajn’s theorem in the next section.

5.2.1. Representing X via a primitive action G ↷ X/∼. Suppose G ↷ X is an
action and ∼ is a G-condensation. As in Subsection 4.2.3 we may view X as a
replacement X/∼(I[c(x)]) of X/∼ up to the orbit equivalence relation of the induced

action G ↷ X/∼. Let R = X/∼ denote the completion of X/∼. By considering
the extended action G ↷ R, we can even view X as a replacement R(I[c(x)]) of R
up to this orbit equivalence relation, in which points in R not belonging to X/∼
(i.e. gaps in X/∼) are replaced by the empty order ∅.
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If ∼ is a maximal G-condensation ofX, then by Proposition 5.1.7 the action G ↷
X/∼ is primitive. By Lemma 5.1.8, either X/∼ ∼= Z or the action is transitively
derived. In the transitively derived case, Lemma 5.1.8 guarantees that every orbit
of the action G ↷ R is dense in R, so that every replacing order I[c(x)] appears
densely often in the replacement representation R(I[c(x)]) of X.

In subsection 5.2.3 below we study the case when G acts by irreducible automor-
phisms on X. We will show that there is always a maximal G-condensation ∼ for
such an action. Moreover, if the resulting primitive action G ↷ X/∼ is transitively
derived, the completion R of X/∼ is isomorphic to R. Thus the representation
described in the previous paragraph yields a representation of X as a replacement
R(I[c(x)]) up to the orbit equivalence relation of G.

5.2.2. A canonical condensation for dense, ordered actions. In this subsection we
show that if G = (G, ·, <) is a densely ordered group and G ↷ X is an ordered G-
action, then there is a canonical G-condensation ∼bb which is maximal with respect
to the property that the induced action G ↷ X/∼bb remains ordered. We will use
this condensation in the next subsection in proving our representation theorem for
orders X under an action by irreducible automorphisms.

For the remainder of this subsection, let G = (G, ·, <) denote an ordered group,
and suppose G ↷ X is an ordered G-action.

Definition 5.2.1. Define a relation ∼bb on X by the rule x ∼bb y if g[{x, y}] ∩
[{x, y}] = ∅ for all g ∈ G such that g ̸= 1.

We write bb(x) for the ∼bb-class of x, i.e. bb(x) = {y ∈ X : x ∼bb y}.

The relation ∼bb is defined with respect to the action G ↷ X, though this is not
indicated in the notation. In practice it will hopefully always be clear from context
with respect to which action ∼bb is being defined.

Intuitively, ∼bb is a nearness relation: if x ∼bb y, then any non-identity element
g either moves x beyond y (in one direction) or y beyond x (in the other). We will
show in Proposition 5.2.3 that ∼bb is a G-condensation when G is densely ordered.
The following lemma says that the ∼bb-class of a given x ∈ X is the largest interval
in X that intersects Gx only in {x}.

Lemma 5.2.2. For x, y ∈ X, we have x ∼bb y if and only if Gx ∩ [{x, y}] = {x}.

Proof. Suppose x ∼bb y and there is z ∈ Gx∩ [{x, y}] with z ̸= x. Then z = gx for
some g ̸= 1. We may assume x < z ≤ y; the case when y ≤ z < x is symmetric.
Then the interval g[x, y] = [gx, gy] contains z = gx and hence intersects [x, y],
contradicting x ∼bb y.

Now suppose Gx ∩ [{x, y}] = {x}. Fix g ∈ G, g ̸= 1. We want to show
g[{x, y}]∩ [{x, y}] = ∅. We may again assume x < y. Suppose g[x, y]∩ [x, y] ̸= ∅. If
g > 1 then this implies x < gx < y < gy so that Gx∩ [x, y] ̸= ∅, a contradiction. If
g < 1, then gx < x < gy < y. But then x < g−1x < y < g−1y, again contradicting
Gx ∩ [x, y] = ∅. □

We say that an ordered group (G, ·, <) is dense if the underlying linear order
(G,<) is dense.

Proposition 5.2.3. Suppose G is dense. Then ∼bb is a G-condensation of X.

Proof. We first show ∼bb is a condensation. It is reflexive, since the action by G is
an ordered action. It is clearly symmetric and convex by definition.
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We check transitivity. Suppose x ∼bb y ∼bb z. We may assume that either
x < y < z or z < y < x, since otherwise x ∼bb z follows from convexity of the
relation. Assume we are in the former case; the latter is symmetric.

Suppose there is g ∈ G, g ̸= 1 such that g[x, z] ∩ [x, z] ̸= ∅. If g > 1, then
this gives x < gx < z < gz. Since x ∼bb y and y ∼bb z we must have that
x < y < gx < gy and y < z < gy < gz. Combining these inequalities gives
x < y < gx < z < gy < gz.

By the density of G we can find h such that 1 < h < g. Again using that
x ∼bb y and y ∼bb z, it follows we have x < y < hx < hy < gx < gy and
y < z < hy < hz < gy < gz. But then hy < z < hy, a contradiction. The case
when g < 1 is similar. Thus ∼bb is a condensation of X.

To check it is a G-condensation, fix x ∈ X and g ∈ G. We want to see that
g[bb(x)] = bb(gx). Suppose not. If g[bb(x)] \ bb(gx) ̸= ∅, then by Lemma 5.2.2 we
can find a point z ∈ g[bb(x)] that belongs to the orbit of gx. Say z = hgx with
h ̸= 1. But then g−1hgx ∈ bb(x), contradicting the lemma (since g−1hg ̸= 1).
If instead there is z ∈ bb(gx) \ g[bb(x)], then g−1z belongs to g−1bb(gx) \ bb(x).
Hence we can find h ̸= 1 such that hx ∈ [{x, g−1z}], which gives ghx ∈ [{gx, z}],
contradicting that z ∈ bb(gx) (since ghx ̸= gx). □

Though the definition of ∼bb makes sense for any ordered action by an ordered
group G, we will only be interested in this relation when G is dense. The reason is
that ∼bb is not in general even a condensation when G is not dense. For example,
suppose X = Z and G is the group generated by the automorphism f : X → X
defined by f(x) = x+2. Then G = {fn : n ∈ Z} and is ordered by the rule fn < fm

if n < m. Under this ordering, the action of G on X is an ordered G-action. For
any x ∈ X, we have x− 1 ∼bb x ∼bb x+ 1, but x ̸∼bb x+ 2. It follows immediately
that ∼bb is not a transitive relation on X, and in particular not a condensation.

When G is dense, ∼bb is the coarsest G-condensation for which the induced
action G ↷ X/∼bb remains an ordered action.

Proposition 5.2.4. Suppose G is dense. We have the following.

i. The induced action G ↷ X/∼bb is an ordered G-action.
ii. If ∼ is a G-condensation such that the induced action G ↷ X/∼ is an

ordered G-action, then ∼ is a sub-condensation of ∼bb.

Proof. (i.) Fix g, h ∈ G with g < h, and x ∈ X. We want to show gbb(x) < hbb(x).
Observe that we cannot have hbb(x) < gbb(x) since gy < hy for all y ∈ bb(x). Thus
if gbb(x) ̸< hbb(x), since these are intervals we must have gbb(x) ∩ hbb(x) ̸= ∅.
Suppose this is the case, and fix z ∈ gbb(x) ∩ hbb(x). Then z = gy = hy′ for
some y, y′ ∈ bb(x). But then y = g−1hy′, which implies y ̸∼bb y′ since g ̸= h, a
contradiction.

(ii.) Let c : X → X/∼ denote the condensation map for ∼. If (ii.) is false, we
can find x, y ∈ X such that x ∼ y but x ̸∼bb y. We may assume x < y. Since
x ̸∼bb y we can find g > 1 such that x < gx ≤ y. But then c(x) ∩ gc(x) ̸= ∅,
contradicting that c(x) = 1c(x) < gc(x), since G ↷ X/∼ is an ordered action. □

Definition 5.2.5. A G-condensation ∼ is called an ordered G-condensation if the
induced action G ↷ X/∼ is an ordered action.

Proposition 5.2.4 says that when G is dense, there is a largest ordered G-
condensation, namely ∼bb. Though this expresses a kind of maximality for ∼bb,
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it need not be true in general that ∼bb is actually maximal in the sense of Defini-
tion 5.1.6. We will show in the next subsection however that ∼bb is maximal when
G ↷ X is a densely ordered action by irreducible automorphisms.

5.2.3. The representation theorem. We now prove our representation theorem for
an order X in the presence of an irreducible action G ↷ X. It will be convenient
to work directly with subgroups H ≤ Aut(X) consisting of irreducible automor-
phisms of X, and consider the natural action H ↷ X. Up to taking a quotient,
this is equivalent to studying more general irreducible actions G ↷ X, and the
representation is the same in both cases.

So suppose that H ≤ Aut(X) and H consists of irreducible automorphisms of
X. By Theorem 4.4.3 and Corollary 4.4.5, H is linearly ordered by the pointwise
ordering under which H is isomorphic to a subgroup H ′ of (R,+, <). Moreover,
the action H ↷ X is ordered.

Subgroups H ′ of (R,+) come in two types: either H ′ is dense in R (and hence
dense as a linear order), or H is isomorphic to Z. Indeed, if H ′ is not dense then
there are elements g, h ∈ H ′ such that g < h but there is no r ∈ H ′ with g < r < h.
Then it is not hard to check that since H ′ is Archimedean, f = h− g generates H ′,
so that H ′ ∼= Z.

We will say that our group H ≤ Aut(X) is dense if the corresponding subgroup
H ′ ≤ (R,+) is dense (or equivalently, if H is densely ordered by the pointwise
ordering), and discrete if H ∼= H ′ ∼= Z.

For the moment, assume that H is dense. Then by Proposition 5.2.3 we have
that ∼bb is an H-condensation of X. Let Y = X/∼bb denote the condensed order,
and consider the induced action H ↷ Y . We also consider the extended action
H ↷ Y on the completion of Y . Since an automorphism is irreducible on Y if
and only if its extension to Y is irreducible, we have that H also acts on Y by
irreducible automorphisms. In particular H ↷ Y is ordered. This action turns out
to be primitive as well. This follows from the following proposition, which says that
∼bb is a maximal H-condensation in a strong sense.

Proposition 5.2.6. Suppose ≈ is an H-condensation for the action H ↷ X. Then
either ∼bb extends ≈, or ≈ condenses X to a point.

Proof. Suppose ≈ is an H-condensation of X that is neither strictly extended by
∼bb nor equal to ∼bb. Then for some x < y in X with x ̸∼bb y we have x ≈ y. By
the definition of ∼bb there is h ∈ H such that x < hx ≤ y. By the convexity of ≈,
we have x ≈ hx. But then x ≈ hnx for every n ∈ Z. Since h is irreducible and ≈
is convex, it must be ≈ condenses X to a point, as desired. □

Corollary 5.2.7. The condensation ∼bb is the unique maximal condensation for
the action H ↷ X.

Proof. Both maximality and uniqueness of ∼bb follow from Proposition 5.2.6. □

Corollary 5.2.8. The action H ↷ Y is primitive.

Proof. Immediate from Propositions 5.1.7 and 5.2.7. □

Since H is densely ordered, we have in particular that Y is not isomorphic to Z.
Hence H ↷ Y is transitively derived. The following corollary is immediate from
Lemma 5.1.8.
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Corollary 5.2.9. For every y ∈ Y , the orbit Hy is dense in Y . □

Since H ↷ Y is ordered, every orbit Hy is order-isomorphic to H, which in turn
is isomorphic to a dense subgroup H ′ of R. It follows Hy ∼= H ∼= H ′ = R. Since
Hy is dense in Y , we have Y = Hy ∼= R.

We will use the following fact in the proof of the representation theorem.

Lemma 5.2.10. The action H ↷ Y is isomorphic to the natural action H ′ ↷ R.

Proof. Fix y∗ ∈ Y . The action H ↷ Hy∗ is naturally isomorphic to the action
H ↷ H of H on itself by (left) multiplication. Since H is isomorphic to H ′,
this action is in turn isomorphic to the action H ′ ↷ H ′ by addition. Thus by
Proposition 4.2.2, H ↷ Hy∗ is isomorphic to H ′ ↷ R. But Hy∗ is dense in Y , so
that Hy∗ = Y . Hence H ↷ Y is isomorphic to H ′ ↷ R. □

Here is our representation theorem. We restate our hypotheses.

Theorem 5.2.11. Suppose H ≤ Aut(X) is a group of irreducible automorphisms
of X that is densely ordered by the pointwise ordering.

Then there is a dense subgroup H ′ ≤ (R,+) such that H is isomorphic to H ′ as
an ordered group, and such that X is isomorphic to a replacement R(J[r]) of R up
to the orbit equivalence relation of the natural action H ′ ↷ R by addition.

Moreover, the action H ↷ X is isomorphic to the lift action H ′ ↷l R(J[r]).

Proof. The proof amounts to sharpening some of our discussion in this and the
preceding subsections. As above, let Y denote X/∼bb. We consider the induced
action H ↷ Y as well as its extension to Y .

We have already observed there is H ′ ≤ (R,+) isomorphic to H. Fix an ordered
group isomorphism ϕ : H → H ′. By Lemma 5.2.10, H ↷ Y is isomorphic to
H ′ ↷ R. Fix an isomorphism ι : Y → R that is equivariant with respect to the
actions H ↷ Y and H ′ ↷ R and the isomorphism ϕ.

By the discussion in subsection 5.2.1, X is isomorphic to a replacement Y (I[bb(x)])
up to the orbit equivalence relation of the induced action H ↷ Y . Toward proving
the final claim in the theorem’s statement, we will explicitly define the orders I[bb(x)]
and the isomorphism between X and Y (I[bb(x)]).

The notation below is something of a thicket. The idea is simply that, since H
acts uniquely transitively on all of its orbits in Y = X/∼bb, it maps (as an action
on X) any condensation class bb(x) (viewed as an interval in X) uniquely onto any
other condensation class hbb(x) = bb(hx) in its H-orbit, namely via h. Thus if we
take any one of the intervals bb(x) in a given orbit [bb(x)] = Hbb(x) and replace
all of the other intervals with this one, H’s action on X becomes a lift action on
X/∼bb(bb(x)), which is naturally isomorphic to X. Since X/∼bb is equivariantly
isomorphic to a dense suborder Y ′ of R, we can view represent X as a replacement
of Y ′ up to the orbit equivalence relation of H ′ (which acts as a lift action on this
replacement), then pass to completions to represent X as a replacement of R.

More precisely, for each orbit C of the action H ↷ Y , fix xC ∈ X such that
bb(xC) ∈ C (i.e. so that C = [bb(xC)] = Hbb(xC)). For a given class C and for
every x ∈ X such that [bb(x)] = C, define Ibb(x) = I[bb(x)] = bb(xC) (viewing bb(xC)
as an interval in X). We write succinctly, Ibb(x) = bb(x[bb(x)]).

Since H’s action on itself is uniquely transitive (as H ↷ H is isomorphic to
H ′ ↷ H ′), the same is true of H’s action on each orbit equivalence class C =
Hbb(xC) = [bb(xC)]. In particular, for each condensation class bb(x), there is a
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unique h ∈ H such that hbb(x) = bb(xC). Write hbb(x) for this h. Then hbb(x) is an
order-isomorphism of bb(x) with I[bb(x)] = bb(xC) = bb(x[bb(x)]).

For a fixed h ∈ H and x ∈ X, the composed map hbb(hx)h (which is also hhbb(hx)

by the commutativity of H) sends bb(x) onto bb(x[bb(hx)]) = bb(x[bb(x)]). By unique
transitivity, hbb(hx)h must be equal to hbb(x). It follows that hbb(hx)(hx) = hbb(x)(x).

Let us view X as a replacement X/∼bb(bb(x)) = Y (bb(x)) by denoting each
x ∈ X with the enriched coordinates (bb(x), x). Then the action H ↷ X can be
rewritten as an action H ↷ Y (bb(x)) by defining h(bb(x), x) = (bb(hx), hx) for all
h ∈ H and x ∈ X.

Now consider the replacement X/∼bb(I[bb(x)]) = Y (I[bb(x)]) of Y up to the orbit
equivalence relation of H. The maps hbb(x) naturally determine an isomorphism
between X = Y (bb(x)) and this replacement, namely the map defined by the rule
(bb(x), x) 7→ (bb(x), hbb(x)(x)). The corresponding (i.e. isomorphic) action of H on
Y (I[bb(x)]), obtained by pushing forward the action H ↷ Y (bb(x)), is defined by
h(bb(x), hbb(x)(x)) = (bb(hx), hbb(hx)(hx)).

As we observed above, hbb(hx)(hx) = hbb(x)(x) for all h ∈ H and x ∈ X.
Hence the action H ↷ Y (I[bb(x)]) is also defined by the rule h(bb(x), hbb(x)(x)) =
(bb(hx), hbb(x)(x)). Since bb(hx) = hbb(x), this is the lift action. Thus we have

shown that the original action H ↷ X is isomorphic to the lift action H ↷l

Y (I[bb(x)]).
Let Y ′ = ι[Y ] be the suborder of R isomorphic to Y . We may push the re-

placement Y (I[bb(x)]) forward to a replacement of Y ′ by defining, for r ∈ Y ′,
Jr = Iι−1(r) = I[ι−1(r)]. Since ι is equivariant with the actions H ↷ Y and H ′ ↷ Y ,
we have Jr = Js whenever r, s belong to the same H ′-orbit. Thus the replacement
Y ′(Jr) is a replacement Y ′(J[r]) up to the orbit equivalence relation of H ′. More-
over, the map (bb(x), k) 7→ (ι(bb(x)), k) defines an isomorphism of Y (I[bb(x)]) with
Y ′(J[r]) that is equivariant with the lift actions of H and H ′ on these orders. Hence
these actions are isomorphic. By the previous paragraph, this shows that the orig-
inal action H ↷ X is isomorphic to H ′ ↷l Y ′(J[r]).

Finally, we may view Y (I[bb(x)]) as a replacement Y (I[bb(x)]) in which gaps in Y
are replaced by the empty order ∅. Likewise we may view Y ′(J[r]) as a replacement

R(J[r]). Then the actions H ↷l Y (I[bb(x)]) and H ↷l Y (I[bb(x)]) are identified, as

are H ′ ↷l Y ′(J[r]) and H ′ ↷l R(J[r]). The conclusion follows. □

Let us now turn to the case when H ≤ Aut(X) is irreducible and discrete. In
this case, H is generated by a single irreducible automorphism f : X → X that we
may assume to be increasing. We have a representation for X in this case as well,
and in fact many representations, that we have already discussed. Namely, for any
x ∈ X we have X ∼= ZAx,f (or X ∼= ZAx,f−1 ; see Definition 4.5.1). Explicitly, we
can write X as the disjoint union of the intervals fn[Ax,f ] = Afn(x),f which are
ordered as Z and each of which is isomorphic to Ax,f .

The representations X ∼= ZAx,f are similar to the representation expressed in
Theorem 5.2.11 above for the dense case, in that they represent X as a replacement
of (in fact, product by) a primitive quotient X/∼ of X. Namely, if we define for a
given x ∈ X a relation ∼x,f by the rule y ∼x,f z if y, z both belong to Afn(x),f for
some n ∈ Z, then ∼x,f defines the condensation of X whose condensation classes
are the intervals Afn(x),f . Since f sends each of these intervals onto the subsequent
one, we have that ∼x,f is an H-condensation. Moreover it is clearly maximal, either
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by direct inspection or using the fact that X/∼x,f
∼= Z and Lemma 5.1.8, so that

the induced action H ↷ X/∼x,f is primitive.
In fact, it is not difficult to show that in the discrete case the condensations ∼x,f

are precisely the maximal H-condensations.

Proposition 5.2.12. Suppose f is an irreducible automorphism of X and H ≤
Aut(X) is the group generated by f . Then an H-condensation ∼ is a maximal if
and only if it is equal to ∼x,g for some x ∈ X and g ∈ {f, f−1}.

Proof. It remains to check the backward direction. Suppose ∼ is a maximal H-
condensation. Fix a ∼-class C, and let Cn denote fn[C]. We may assume that
f is increasing. Then we have Cn < Cm whenever m < n. Moreover, since f is
irreducible, the Cn’s are unbounded to the left and right in X.

Let In = {y ∈ X : Cn < y < Cn+1}. Then we have

· · · < C−1 < I−1 < C0 < I0 < C1 < I1 < · · · ,

and moreover these intervals are pairwise disjoint and cover X. For each n, define
Dn = Cn ∪ In. Observe f [Dn] = Dn+1 for every n ∈ Z. It follows that the
Dn’s constitute the condensation classes of an H-condensation. If any Dn strictly
extends Cn, this condensation strictly extends ∼, contradicting its maximality.
Hence Dn = Cn for all n. Now observe that C0 is of the form Ax,g for x the left
endpoint of C0 (if it belongs to X) and g = f , or x the right endpoint of C0 (if it
belongs to X) and g = f−1, or x the left or right endpoint of C0 (if both belong to
X \X) and g equal to either f or f−1, respectively. □

Propositions 5.2.12 and 5.2.7 together imply that whenever H ≤ Aut(X) is
irreducible, there is a maximal H-condensation of X. The difference in the discrete
case is that this maximal condensation is not unique in general (and in fact is
unique only when X = Z and H = Aut(X)).

Thus in any case when H ≤ Aut(X) is irreducible, X is represented as a re-
placement of a primitive quotient X/∼ (or the completion of this quotient) up to
the orbit equivalence relation of the induced action H ↷ X/∼. But the discrete
representations of X as an order of the form ZA are less canonical than the dense
representation expressed in Theorem 5.2.11. This reflects the non-uniqueness of the
maximal condensation used to generate such a representation: there are in general
many such representations, depending on the choice of a base point x ∈ X and an
orientation f, f−1. On the other hand there is only one such representation in the
dense case, corresponding to the unique maximal H-condensation ∼bb.

5.2.4. Representing orders X = ZA with A non-splitting. Using Theorem 5.2.11,
we can write down our representation theorem for orders X of the form ZA with
A non-splitting. Once we do so, we will show that, in a sense, this representation
gives as much structural information about X as can be deduced from knowledge
of its irreducible automorphisms.

We will use the following basic result, whose proof is straightforward.

Proposition 5.2.13. Suppose that G ↷ X is an action, ∼ is a G-condensation
with condensation map c, and G ↷ X/∼ is the induced action.

Given a G-condensation ≈ of X extending ∼, the relation ≈∗ on X/∼, defined
by c(x) ≈∗ c(y) if x ≈ y, is a G-condensation of X/∼. Conversely, every G-
condensation of X/∼ has this form.
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For the remainder of this section, fix an order X of the form X = ZA with A
non-splitting.

By Theorem 4.5.7, the induced action Aut(X) ↷ X/∼b is irreducible, where ∼b

is the bubble condensation of X. As in Section 4.5, let Nb denote the kernel of this
action. Then the corresponding free (hence faithful) action Aut(X)/Nb ↷ X/∼b

is also irreducible, and it follows that its top part Aut(X)/Nb ↷t X is likewise
irreducible and free. Thus we may identify Aut(X)/Nb with a subgroup H ≤
Aut(X) consisting of irreducible automorphisms.

As in the previous section, our representation of X will depend on whether
H = Aut(X)/Nb is dense or discrete.

Representing X in the dense case. Suppose first that H is dense, so that the
relation ∼bb defined with respect to H (see Definition 5.2.1) is an H-condensation
of X. Then ∼bb is maximal as an H-condensation of X in the sense of Proposition
5.2.6. Since ∼b is an Aut(X)-condensation (and hence also an H-condensation),
we have in particular that ∼bb extends ∼b.

By Theorem 5.2.11, H is isomorphic to a dense subgroup H ′ of (R,+) and X is
isomorphic to a replacement R(J[r]) of R up to the orbit equivalence relation of H ′

such that the action H ↷ X is isomorphic to the lift action H ′ ↷l R(J[r]). The
isomorphism X ∼= R(J[r]) is our representation of X.

We now aim to describe the sense in which this representation of X is best
possible as a representation by a dense group of irreducible automorphisms of X.
For this, it will help to recall some details of the proof of Theorem 5.2.11.

In that proof, the representation is obtained by first writing X as X/∼bb(bb(x)),
and then observing that this replacement is naturally isomorphic to a replacement
X/∼bb(I[bb(x)]) of X/∼bb up to the orbit equivalence relation of H ↷ X/∼bb.

The representation X ∼= X/∼bb(I[bb(x)]) is essentially the same as the represen-

tation X ∼= R(J[r]). Indeed, there is an isomorphism ι : X/∼bb → R witnessing

that the induced action H ↷ X/∼bb is isomorphic to H ′ ↷ R. In particular,

ι is an isomorphism of the orbit equivalence relation EH on X/∼bb and the re-
lation EH′ on R: we have bb(x)EHbb(y) if and only if ι(bb(x))EH′ι(bb(y)). We
defined the replacement R(J[r]) precisely so that ι lifts to an isomorphism witness-

ing that the actions H ↷l X/∼bb(I[bb(x)]) and H ′ ↷l R(J[r]) are isomorphic. More
specifically, for r ∈ R we defined Jr = Iι−1(r), so that for any x ∈ X we have
I[bb(x)] = Ibb(x) = Jι(bb(x)) = J[ι(bb(x))].

We may view X/∼bb equipped with the orbit equivalence relation EH (or iso-
morphically, R equipped with EH′) as precisely the information contained in the

representation X ∼= X/∼bb(I[bb(x)]). The structural content of this information is
that two segments Ibb(x) and Ibb(y) in this replacement are isomorphic (in fact,
equal) if bb(x)EHbb(y).

While it need not be true in general that if bb(x) and bb(y) lie in different EH -
classes (i.e. different H-orbits) then Ibb(x) ̸∼= Ibb(y), there is a partial converse that
does hold. Before specifying it, we argue that the representation yielded by any
other dense group of irreducible automorphisms of X contains at most as much
information as the representation above.

We first need to more explicitly analyze the top part action Aut(X)/Nb ↷t X.
For the moment, we distinguish again Aut(X)/Nb and the irreducible subgroup
H ≤ Aut(X) to which it is naturally isomorphic via this action.



52 GARRETT ERVIN AND ERIC PAUL

For g ∈ Aut(X), as before we write ĝ for the quotient class gNb ∈ Aut(X)/Nb.

For a subgroup G ≤ Aut(X), we write Ĝ for the corresponding subgroup {ĝ : g ∈
G} ≤ Aut(X)/Nb.

For a given ĥ ∈ Aut(X)/Nb, we write ĥ∗ for the corresponding element of H.

That is, the map ĥ 7→ ĥ∗ is the isomorphism of Aut(X)/Nb and H from the top
part action.

Identify X with the replacement X/∼b(b(x)), labelling each x ∈ X with enriched
coordinates (b(x), x). By definition of the action Aut(X)/Nb ↷t X, for a given

ĥ ∈ Aut(X)/Nb (represented by h ∈ Aut(X)) and a given x = (b(x), x) ∈ X, we

have on one hand that ĥ(b(x), x) = (hb(x), z) = (b(hx), z) for some z ∈ b(hx). On

the other, we have ĥ(b(x), x) = (ĥ∗b(x), ĥ∗x) = (b(ĥ∗x), ĥ∗x). Combining these

equations gives b(ĥ∗x) = b(hx). Since x was arbitrary, it follows that ĥ∗ ∈ ĥ. Thus

we have that H = {ĥ∗ : ĥ ∈ Aut(X)/Nb} is a group of coset representatives of

Aut(X)/Nb. In particular, Ĥ = Aut(X)/Nb.
We now proceed in showing the optimality of our representation. Suppose that

G ≤ Aut(X) is a group of irreducible automorphisms of X that is dense under the
pointwise ordering of the action G ↷ X. Denote the bb-relation onX corresponding
to this action by∼bbG . By Theorem 5.2.11 we may, via this action, likewise represent

X as a replacement R(K[r]), where now R corresponds to X/∼bbG and the replacing

orders K[r] correspond to orders I[bbG(x)] in a replacement X/∼bbG(I[bbG(x)]) that is
naturally isomorphic to X in the same sense as above.

For clarity, relabel the relation ∼bb from the action H ↷ X as ∼bbH . We

compare the representations X/∼bbH (I[bbH(x)]) and X/∼bbG(I[bbG(x)]). Since G is

irreducible, we know by Theorem 4.5.7 that G∩Nb = {1} so that Ĝ ∼= G/(G∩Nb)
is canonically isomorphic to G. Thus while G may not be an actual subgroup of

H, it is isomorphic to such a subgroup, since G ∼= Ĝ ≤ Aut(X)/Nb = Ĥ ∼= H.
Since ∼bbH and ∼bbG both extend ∼b, we may consider the corresponding con-

densations (in the sense of Proposition 5.2.13) on X/∼b. We claim that these
are precisely the bb-condensations ∼bb

Ĥ
and ∼bbĜ

defined with respect to the irre-

ducible actions Ĥ ↷ X/∼b and Ĝ ↷ X/∼b (which are canonically isomorphic to
the induced actions H ↷ X/∼b and G ↷ X/∼b). This follows from the following
observation.

Lemma 5.2.14. For any pair of points x < y in X, we have Gx ∩ [x, y] = {x} (in

X) if and only if Ĝb(x) ∩ [b(x), b(y)] = {b(x)} (in X/∼b).

Proof. Suppose x < gx < y for some g ∈ G, g ̸= 1. Since g is irreducible, we
have b(x) < gb(x) and hence b(x) < gb(x) ≤ b(y) (in X), which implies that
b(x) < ĝb(x) ≤ b(y) (in X/∼b). This gives the backward direction.

For the forward direction, suppose we had ĝ ∈ Ĝ such that b(x) < ĝb(x) ≤ b(y)
(in X/∼b). Then either ĝb(x) < b(y), in which case x < gx < y and we are done,

or ĝb(x) = b(y). In the second case, by density of Ĝ there is ĝ′ ∈ Ĝ such that

1 < ĝ′ < ĝ, which gives b(x) < ĝ′b(x) < ĝb(x) = b(y). But then x < g′x < y, and
we are again done. □

The lemma says precisely that x ∼bbG y in X if and only if b(x) ∼bbĜ
b(y) in

X/∼b, as claimed above. Since all we needed for the proof was the density of G,
the same is true for H.
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We next show that the relations ∼bbG and ∼bbH coincide. This follows from the
lemma below, which says that the corresponding relations coincide on X/∼b.

Lemma 5.2.15. For b(x), b(y) ∈ X/∼b, we have b(x) ∼bb
Ĥ

b(y) if and only if

b(x) ∼bbĜ
b(y).

Proof. Since Ĝ is a subgroup of Ĥ, the forward direction is immediate. For the
backward direction, suppose b(x) ̸∼bb

Ĥ
b(y). Without loss of generality, we may

assume b(x) < b(y). Then we have b(x) < ĥb(x) < b(y) for some ĥ ∈ Ĥ.

Since Ĥ and Ĝ are isomorphic to subgroups of (R,+), and the only subgroups
of (R,+) that are dense as linear orders are dense in (R,+), it follows that since

Ĝ is a subgroup of Ĥ that is dense as a linear order, Ĝ is dense in Ĥ. Thus we

can find ĝ ∈ Ĝ with 1 < ĝ < ĥ. But then b(x) < ĝb(x) < ĥb(x) < b(y), so that
b(x) ̸∼bbĜ

b(y) as well. □

It follows from Lemmas 5.2.14 and 5.2.15 that the relations ∼bbH and ∼bbG on
X also coincide. Thus we may denote them both by ∼bb.

Since these relations coincide, we have X/∼bbH = X/∼bbG = X/∼bb. There is

a naive sense in which the representations X/∼bbG(I[bbG(x)]) and X/∼bbH (I[bbH(x)])
are essentially the same. Indeed, by the way we constructed these orders from the
representation X ∼= X/∼bb(bb(x)), for a given class bb(x) = bbH(x) = bbG(x) we
must have IbbH(x)

∼= IbbG(x)
∼= bb(x) (viewing bb(x) as an interval in X). Thus

if we view X/∼bbG(I[bbG(x)]) and X/∼bbH (I[bbH(x)]) only as replacements of X/∼bb

(not replacements up to the orbit equivalence relations of G and H), then they are
essentially the same replacement.

Viewed as replacements up to orbit equivalence however, there is another sense
in which X/∼bbG(I[bbG(x)]) gives less information as a representation of X than

X/∼bbH (I[bbH(x)]) when Ĝ is a strict subgroup of Ĥ. In this case, since G and H

(or equivalently, Ĝ and Ĥ) act freely on X/∼bb, we have that EG is a strictly finer

equivalence relation than EH on X/∼bb. Thus if we are only given access to the

action G ↷ X and the corresponding representation X/∼bbG(I[bbG(x)]), we would
only know definitively that some pair of replacing orders IbbG(x) and IbbG(y) are
isomorphic when bb(x) and bb(y) lie in the same G-orbit, that is, when bb(y) ∈
[bb(x)]G = Gbb(x). However, it may be that bb(y) ∈ Hbb(x) but bb(y) ̸∈ Gbb(x). In

this case, in the replacement X/∼bbH (I[bbH(x)]) we have the information that the
orders IbbH(x) and IbbH(y) are isomorphic (in fact, equal), but in the representation

X/∼bbG(I[bbG(x)]) we do not know that the corresponding orders IbbG(x) and IbbG(y)

are isomorphic (though they are). In the same sense, the representation of X as
R(K[r]) gives less information than its representation as R(J[r]).

For the remainder of this subsection, we denote X/∼bbH (I[bbH(x)]) again by

X/∼bb(I[bb(x)]) and call it the canonical representation of X.

Even for the canonical representation, it may be that for bb(x), bb(y) ∈ X/∼bb

with bb(y) ̸∈ [bb(x)], we have Ibb(x) ∼= Ibb(y). So even this representation may not
give complete information about which pairs of replacing orders Ibb(x) and Ibb(y)
are isomorphic.

What is true, however, is the following. Identify X/∼bb with R and the action

H ↷ X/∼bb with the corresponding action H ′ ↷ R. Fix bb(x0), bb(y) ∈ R with
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bb(y) ̸∈ H + bb(x0) (using additive notation to reflect our view of H as a subgroup
of R) and let d = bb(y)− bb(x0). Then d ̸∈ H.

While it may happen that Ibb(x0)
∼= Ibb(y) = Ibb(x0)+d, we claim that there exists

bb(u) ∈ R such that Ibb(u)+d ̸∼= Ibb(u). If not, then for any x ∈ X, h ∈ H, and n ∈ Z
we have Ibb(x) = Ibb(hx) ∼= Ibb(hx)+nd = Ibb(x)+h+nd. But then X/∼bb(I[bb(x)]) is
essentially a replacement up to the orbit equivalence relation of ⟨H, d⟩. That is, if for
every ⟨H, d⟩-orbit equivalence class [bb(x)]⟨H,d⟩ we identify the pairwise isomorphic
orders Ibb(u) for bb(u) ∈ [bb(x)]⟨H,d⟩, and write I[bb(x)]⟨H,d⟩ for this order, then our

canonical representation X/∼bb(I[bb(x)]) is in fact a replacement X/∼bb(I[bb(x)]⟨H,d⟩)

up to the orbit equivalence relation of ⟨H, d⟩. If we identifyX with this replacement,
we have that the map (bb(x), z) 7→ (bb(x)+d, z) defines an irreducible automorphism
of X, so that ⟨H, d⟩ is a group of irreducible automorphisms of X.

But this is impossible. Viewing d as an element of Aut(X), we have d̂ ∈
Aut(X)/Nb. Since H is a group of coset representatives of Aut(X)/Nb, there is

h ∈ H such that d ∈ ĥ. Thus db(x) = hb(x) for all x ∈ X. Since ∼bb ex-
tends ∼b, this gives dbb(x) = hbb(x), or, writing additively, d + bb(x) = h + bb(x)
for all x ∈ X as well. In particular, for our y and x0 from above, we have
bb(y) = d+ bb(x0) = h+ bb(x0), so that bb(y) ∈ H + bb(x0), a contradiction.

Said another way, the argument above shows that for the R-version of the canon-
ical representation X ∼= R(J[r]), there is no translation of R other than those found
in H that lifts to an automorphism of X. In this sense, the representation gives
as much information about the isomorphism types of the replacing orders Jr as
possible from a group of translations: if r− s ∈ H, then Jr ∼= Js, and if r− s ̸∈ H,
then for some k ∈ R we have Jk ̸∼= Jk+(r−s).

Representing A in the dense case. From our canonical representation of X = ZA,
we can read off a representation of the non-splitting segment A when Aut(X)/Nb

is dense. We will actually give a representation of an arbitrary bounded segment I
of X that is not condensed to a point by the ∼bb relation. We will also show that
the length of its condensed image bb[I] in X/∼bb

∼= R is an isomorphism invariant
of such a segment I.

As above, it will be convenient to again for the moment identify X/∼bb with R
(thereby identifying each of its points bb(x) with some real number r) and view
H as an actual subgroup of (R,+). We will use mixed notation for the canonical
representation, writing X = R(I[bb(x)]).

Although we have already been working with the completion X/∼bb of X/∼bb

(viewing gaps in X/∼bb as being replaced by ∅ when passing to the replacement

X/∼bb(I[bb(x)])), it will be helpful to develop this point of view further, and say how

we may extend ∼bb to an Aut(X)-condensation of the completion X of X.
We will do this by designating the ∼bb-condensation class of each gap in X.

Suppose y ∈ X \X is such a gap. There are several possibilities. First, it may be
that y ∈ bb(x) for some x ∈ X, in the sense that u < y < w for some u,w ∈ bb(x).
It may also be that y is the left or right endpoint of bb(x) (when bb(x) is open to the
right or left, respectively). In these cases too we view y ∈ bb(x) (i.e. bb(y) = bb(x)).
Since the classes bb(x) are densely ordered, there is never any ambiguity in this case
to which class y belongs. The other possibility is that y corresponds to a gap in
X/∼bb, i.e., that y is both a right and a left limit of classes bb(x). Then we define
bb(y) = {y}. So extended, ∼bb is an Aut(X)-condensation of X. Moreover, X/∼bb
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is naturally isomorphic to X/∼bb, with the singleton classes bb(y) = {y} filling the

gaps in X/∼bb \X/∼bb.

Definition 5.2.16. Suppose a, b ∈ X with a < b. We say that the closed interval
[a, b] is lengthy if bb(a) ̸= bb(b).

We say that the intervals [a, b), (a, b], and (a, b) are lengthy if [a, b] is lengthy.
The length of [a, b], denoted ℓ([a, b]), is bb(b)− bb(a).
Likewise, we define ℓ([a, b)) = ℓ((b, a]) = ℓ((a, b)) = bb(b)− bb(a).

Thus [a, b] is lengthy if and only if ℓ([a, b]) > 0. Since every bounded interval
I ⊆ X can be written in one of the forms [a, b], [a, b), (b, a], and (a, b) for some
a, b ∈ X, this defines the length of every bounded interval in X. If I is an interval
in X that is unbounded to one or both sides, we define ℓ(I) = ∞. Observe that
if d ∈ H, then the length of I + d (i.e. the interval obtained by applying the
irreducible automorphism d to I) is equal to the length of I.

We note that this notion of length depends on the isomorphism ι we used to
identify X/∼bb and R. This isomorphism in turn depends on the isomorphism
ϕ : H → H ′ from the Hölder-Conrad Theorem 4.4.4 that we used to identify
the irreducible subgroup H ≤ Aut(X) and the group H ′ ≤ (R,+) to which it
corresponds. As noted in the sketched proof of Hölder-Conrad, for any positive f
in H we may choose ϕ so that ϕ(f) = 1; once this is done, ϕ is determined. Once

ϕ is fixed, we may choose the point bb(x) ∈ X/ ∼bb such that ι(bb(x)) = 0. Once
this choice is made, the isomorphism ι is determined by ϕ.

In particular, while the notion of length may differ depending on the choice of ϕ,
it does not depend on the subsequent choice of base point for ι. Moreover, for two
choices ϕ1 and ϕ2 for the isomorphism between H and H ′, the ratio of the lengths
ℓϕ1

(I) and ℓϕ2
(I) for a given bounded interval I is constant (i.e. does not depend

on I), and is equal to the ratio of ϕ1(f) and ϕ2(f) for any non-identity f ∈ H.
Returning to our representation, for each x ∈ X, we may decompose bb(x) as

Lx + {x} + Rx, where Lx denotes the (possibly empty) initial segment of bb(x)
preceding x and Rx denotes the final segment of bb(x) succeeding x.

These decompositions are similar in form to the decompositions of the bubble
classes b(x) we used in Section 4. But we emphasize that here we are decomposing
∼bb-classes, not ∼b-classes. Since ∼bb extends ∼b, it may be that a single class
bb(x) consists of many ∼b-classes, so that b(x) may be a strict subinterval of bb(x).

Using these decompositions and our canonical representation of X, we may rep-
resent lengthy intervals of X. Fix a, b ∈ X with bb(a) < bb(b). Let r = bb(a) and
s = bb(b), and let (r, s)(I[bb(x)]) denote the restriction of the replacement R(I[bb(x)])
to the open interval (r, s) = (bb(a), bb(b)).

We represent the intervals [a, b], [a, b), (b, a], and (a, b) in X as follows:

[a, b] = {a}+Ra + (r, s)(I[bb(x)]) + Lb + {b},
[a, b) = {a}+Ra + (r, s)(I[bb(x)]) + Lb,
(a, b] = Ra + (r, s)(I[bb(x)]) + Lb + {b},
[a, b] = Ra + (r, s)(I[bb(x)]) + Lb.

From these general representations, we can read off a representation of the seg-
ment A.

Let f : X → X denote the (increasing, irreducible) +A map on X. Assume that
A has a point or gap x0 at its left, so that A = Ax0,f ; the representation when A
has a right endpoint but no left endpoint is similar. Then A = [x0, f(x0)). Letting
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r = bb(x0) and s = bb((f(x0)) we have our representation of A:

A = {x0}+Rx0
+ (r, s)(I[bb(x)]) + Lf(x0).

It is worth noting that since f takes bb(x0) onto bb(f(x0)), we have Rx0
∼= Rf(x0)

and Lf(x0)
∼= Lx0 .

In choosing the isomorphism ϕ : H → H ′, we may choose ϕ(f) = 1 (so that
the +A map on X corresponds to translation by 1 on R). We may also choose

ι(bb(x0)) = 0 for our identification ι : X/∼bb → R. If we do this, the representation
above becomes:

A = {x0}+R+ (0, 1)(I[bb(x)]) + L,

where bb(x0) is isomorphic to the sum L+ {x0}+R.
Thus the segment A can be represented as a lengthy interval of length 1 whose

condensed image bb[A] is just right of the origin.
We conclude this section with the following result, which shows that the length

of a given segment B ⊆ X is a structural property of the order type of B. At
the heart of the proof is again the fundamental fact that we are working over an
internally non-splitting order X.

We emphasize that this theorem holds only relative to the hypotheses of this
section: namely, that X = ZA is internally non-splitting and our group H ≤ (R,+)
of irreducible automorphisms of X is dense.

Theorem 5.2.17. Suppose that B is a bounded interval in X = ZA. If B′ is an
interval of X that isomorphic to B, then ℓ(B′) = ℓ(B).

Proof. For convenience, assume that B is of the form [a, b] for some a, b ∈ X; the
proof for the other possible endpoint configurations is essentially the same. Suppose
that we can find an interval B′ ⊆ X with B′ ∼= B and ℓ(B′) > ℓ(B); the proof
when ℓ(B′) < ℓ(B) is symmetric. Since B′ is isomorphic to B we have B′ = [a′, b′]
for some a′, b′ ∈ X.

Since H ≤ (R,+) is dense and bb(b)− bb(a) < bb(b′)− bb(a′), we can find d ∈ H
such that bb(a′) < bb(a) + d < bb(b) + d < bb(b′). Then the interval B + d is a
subinterval of B′. Since B + d is isomorphic to B, we may assume without loss
of generality that d = 0, that is, that B is a subinterval of B′, and moreover
bb(a′) < bb(a) < bb(b) < bb(b′).

Let ε = ℓ(B′) − ℓ(B) = (bb(a) − bb(a′)) + (bb(b′) − bb(b)). Then at least one of
the differences bb(a)− bb(a′) and bb(b′)− bb(b) is at least ε

2 . Suppose without loss
of generality bb(b′)− bb(b) ≥ ε

2 .
Again by the density of H we can find a translation e ∈ H with e ≤ ε

4 . Let I
denote the initial segment of B′ corresponding to a jump from its left endpoint a′

by e. That is, let I = Aa′,e = [a′, a′ + e).
For n ≥ 0, let In = Aa′+ne,e = [a′ + ne, a′ + (n + 1)e) denote the nth translate

of I by e. All of these translates are isomorphic to I.
Let n∗ denote the unique natural number such that the right endpoint b of B

belongs to In∗ . Then I0 + I1 + · · ·+ In∗ is an initial segment of B′ that contains B
and is isomorphic to (n∗ + 1)I.

Now observe that since bb(b′) − bb(b) ≥ ε
2 , the subsequent translate In∗+1 is

contained entirely in the interval (b, b′]. Thus B′ contains as an initial segment the
sum I0 + I1 + · · ·+ In∗ + In∗+1, which is isomorphic to (n∗ + 2)I.

But then since (n∗ + 1)I contains a convex copy of B, and hence a convex copy
of B′, it contains a convex copy of (n∗+2)I. That is, (n∗+2)I ⩽c (n

∗+1)I. Thus



57

(n∗ +1)I ∼= A+ I +n∗I + I +B, for some orders A and B. By Corollary 3.2.5 this
gives (n∗ + 1)I ∼= I + n∗I + I = (n∗ + 2)I. But then by the Additive Dichotomy
Theorem 3.2.7, we have I ∼= 2I, so that I is splitting. Since I = Aa′,e and X is
internally non-splitting, this contradicts Theorem 4.5.2. □

It follows from Theorem 5.2.17 that if B ⊆ X is an interval in X with left and
right endpoints a, b ∈ X, then for any convex self-embedding f : B → B, the image
f [B] must have its left endpoint in bb(a) and its right endpoint in bb(b). Such an
embedding “squeezes” B only very slightly.

In particular, for the segment A, if say A = {x0} + Rx0 + (0, 1)[I[bb(x)]] + Lx0

as above, then for any convex embedding f : A → A we must have f(x0) = x0 or
f(x0) ∈ Rx0

. We note, however, that we do not in general have control over the
location of f(x0) in Rx0

. In particular, in the case when bb(x0) = Lx0
+{x0}+Rx0

contains bubble classes distinct from b(x0) to the right of b(x0), it may be that for
such an f we have that f(x0) lies outside of b(x0).

Representing X and A in the discrete case. We now turn to the task of writing
down a representation for X = ZA in the case when the group H ∼= Aut(X)/Nb is
discrete, and from this getting a representation of A.

Let f denote the +A map on X. As above, we will suppose that A has a point
or gap x0 at its left, so that A = Ax0,f = [x0, f(x0)). The work below can be easily
adapted in the other case.

Since Aut(X)/Nb is discrete, we have Aut(X)/Nb = ⟨ĝ⟩ for some g ∈ Aut(X).
Let B = Ax0,g = [x0, g(x0)).

Since ĝ generates Aut(X)/Nb we have f̂ = ĝn for some n ≥ 1. By Proposition
4.5.14, we have A ∼= nB. Then, writing each A-term in ZA as nB, we have
X ∼= · · ·+ (B + · · ·+B) + (B + · · ·+B) + · · · = ZB.

We now aim to describe the sense in which the representations A ∼= nB and
X ∼= ZB are at least somewhat canonical.

Definition 5.2.18. Suppose that K is a linear order.

i. An order C is a finite divisor (or simply divisor) of K if K ∼= mC for some
natural number m;

ii. K is divisible by m if K has a divisor C such that K ∼= mC;
iii. K is indivisible if K is not divisible by any natural number m > 1.

Observe that B is indivisible. Indeed, if we had B ∼= mC for some m > 1, then

the +C map h would yield an automorphism of X with ĥm = ĝ, an impossibility,
since Aut(X)/Nb is generated by ĝ.

The following proposition gives a sense in which the representation A = nB is
optimal.

Proposition 5.2.19. Suppose K is a linear order and C is an indivisible linear
order such that K ∼= mC for some natural number m ≥ 1.

We have the following:

i. K is divisible by m′ if and only if m′ divides m;
ii. If m′ divides m with m = m′l, then K ∼= m′C ′ if and only if C ′ ∼= lC.

Proof. Only the forward directions of (i.) and (ii.) require proof. So suppose that
K ∼= m′C ′ for some natural number m′ and order C. Then m′C ′ ∼= mC.

Let d be the greatest common divisor of m′ and m, with m′ = dk and m = dl.
Then dkC ′ ∼= dlC. By the Cancellation Theorem 4.6.1 we have kC ′ ∼= lC. Since
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k and l are coprime, by the Division Theorem 4.6.2, there is an order D such that
C ′ ∼= lD and C ∼= kD. Since C is indivisible, we must have k = 1 and C ∼= D.
Then m′ = d, so that m′ divides m, which gives (i.); moreover we have C ′ ∼= lC,
which gives (ii.). □

The proposition applies directly to the representation A = nB. In particular,
if A ∼= n′B′ for some natural number n′ and order B′, then B is a divisor of B′.
If B′ is also indivisible, then n = n′ and B′ ∼= B. In this sense, there is no finer
representation of A as a multiple of a finite divisor.

There is also a weak sense in which the representation X ∼= ZB, which can be
viewed as a refinement of X ∼= ZA, cannot be refined further.

Definition 5.2.20. Two orders K and K ′ are skew isomorphic if there are orders
R and L such that K ∼= L+R and K ′ ∼= R+ L.

Note that if one of the orders R and L is empty in this definition, then K ∼= K ′.
Thus skew isomorphism generalizes isomorphism.

Our interest in this definition is related to the observation that if K ∼= L + R
and K ′ ∼= R+ L are skew isomorphic, then ZK ∼= ZK ′.

Conversely, if we suppose ZK ∼= ZK ′, and furthermore assume that K and K ′

are indivisible, then K and K ′ must be skew isomorphic. This is given by the
following proposition, whose proof we omit.

Proposition 5.2.21. If C and C ′ are indivisible orders such that ZC ∼= ZC ′, then
C is skew isomorphic to C ′.

Thus if we can represent X as ZB′ for another indivisible order B′, we have
that B and B′ are skew isomorphic. This is essentially a structural order-theoretic
reformulation of the fact that for any choice of base point y0 ∈ X and representative
g′ ∈ ĝ, the order B′ = Ay0,g′ is indivisible, and we have the representationX ∼= ZB′.

5.3. Representing orders X = ZA when A is splitting. In this section we
prove our representation theorem for orders of the formX ∼= ZA when A is splitting.

In many respects our approach and the representation itself are analogous to the
non-splitting case. We will find a (necessarily unique) maximal condensation ∼s

for the action Aut(X) ↷ X, and consider the resulting primitive action Aut(X) ↷
X/∼s on the condensed order. Then, as in Subsection 5.2.1, we may view X as

a replacement of R = X/∼s up to the orbit equivalence relation of the action by
Aut(X). We write X ∼= R(I[s(x)]); this our representation of X.

In contrast to the non-splitting case, the order R will not be uniquely determined,
and we will not seek to classify the possible order types of such R. We will however
prove that, whereas in the non-splitting case the induced action of Aut(X) on R is
uniquely transitively derived, in the splitting case the action Aut(X) ↷ R is doubly
transitively derived. From this result we will deduce a generalization of Holland’s
dichotomy theorem 5.1.12 for orders of the form X ∼= ZA.

A few other points of difference with the non-splitting case are worth mentioning.
First, the ∼s condensation we will define is the analogue of ∼bb from the non-
splitting case. While it is possible to define an analogue in the splitting case of
the bubble condensation ∼b, we will not do so here. Moreover, we will not prove a
general representation theorem a la Theorem 5.2.11 relative to an action on X by
a subgroup H ≤ Aut(X), but rather always work relative to the action of the full
automorphism group Aut(X).
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5.3.1. The self-similar condensation. For the remainder of this section, fix a linear
orderX = ZA with A splitting. WritingX = · · ·+A−1+A0+A1+A2+· · · = Z(An),
we identify A with its central copy A0.

Let f : X → X denote the +A map, and assume that A has a point or gap x0

at its left, so that A = Ax0,f . As previously, this is for convenience only; any of
our results that depend on x0 can be easily modified in the case when A has an
endpoint only on the right. We have An = fn[A] = Afn(x0),f for all n ∈ Z.

Definition 5.3.1. Define a relation ∼s on X by the rule x ∼s y if there does not
exist g ∈ Aut(X) such that gA ⊆ [{x, y}].

We will prove below that ∼s is an Aut(X)-condensation of X. Before we do,
it will be helpful to introduce some terminology and notation for analyzing this
relation.

Definition 5.3.2. An interval I ⊆ X is negligible if a ∼s b for all a, b ∈ I.
Otherwise I is lengthy.

For intervals I, J ⊆ X, we write I ⪯ J if there is g ∈ Aut(X) such that g[I] ⊆ J .
Clearly, ⪯ is a partial order on the intervals of X.

Observe that x ∼s y if and only if A ̸⪯ [{x, y}], and an interval I is lengthy if
and only if A ⪯ [{x, y}] for some x, y ∈ I.

If I, J are intervals in X with I ⊆ J , we say that I is bounded in J if there are
points x, y ∈ J with x < I < y. (An interval is bounded if it is bounded in X.)

Thus, an interval I is lengthy if gA is bounded in I for some g ∈ Aut(X).
For integers m ≤ n, we write Am→n for the interval Am + Am+1 + · · · + An in

X. Note that An→n = An, and in general we have Am→n
∼= (n−m+ 1)A.

Proposition 5.3.3. For all integers m ≤ n, we have Am→n ⪯ A.

Proof. Since A is splitting, we have A ∼= (n − m + 1)A. Thus we may identify
A = A0 with the sum A00 +A01 + · · ·+A0(n−m), where each A0i is isomorphic to
A. Then since

X = · · ·+A−1 +A0 +A1 +A2 + · · ·
we may identify X with the sum

X = · · ·+A−1 + (A00 +A01 + · · ·+A0(n−m)) +A1 +A2 + · · · .

Let h : X → X be the automorphism of X that sends Am+i onto Ai for i ≤ −1,
sends Am+i onto A0i for 0 ≤ i ≤ (n−m), and sends An+i onto Ai for i ≥ 1.

Then h[Am→n] = A0 = A, so that Am→n ⪯ A. □

Proposition 5.3.4. An interval B ⊆ X is lengthy if and only if for every pair of
integers m ≤ n, we have Am→n ⪯ B.

Proof. Suppose B is lengthy. Then we can find g ∈ Aut(X) such that gA is bounded
in B. In particular, A ⪯ B. Since Am→n ⪯ A, we have Am→n ⪯ B.

Conversely, it is enough to assume that A−1→1 ⪯ B: if g witnesses this, then
since gA = gA0 is bounded in B (between gA−1 and gA1), we have that B is
lengthy. □

Corollary 5.3.5. A is lengthy.

Proof. Immediate from Propositions 5.3.3 and 5.3.4. □
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Proposition 5.3.6. For x, y ∈ X, the following are equivalent:

i. x ̸∼s y,
ii. There exists a bounded and lengthy interval B such that B ⪯ [{x, y}],
iii. For every bounded and lengthy interval B we have B ⪯ [{x, y}].

Proof. (i.) ⇒ (ii.): Suppose x ̸∼s y, so that A ⪯ [{x, y}]. Certainly A is bounded
in X, and by Corollary 5.3.5, lengthy. So take B = A.

(ii.) ⇒ (iii.): Suppose B is bounded and lengthy such that B ⪯ [{x, y}], and
fix a bounded and lengthy interval B′. Since B′ is bounded, there exist integers
m ≤ n such that B′ ⊆ Am→n, so that in particular B′ ⪯ Am→n. By Proposition
5.3.4 we have Am→n ⪯ B. Hence B′ ⪯ B, which gives B′ ⪯ [{x, y}]. Since B′ was
arbitrary, we are done.

(iii.) ⇒ (i.): Since A is bounded and lengthy, by hypothesis we have A ⪯ [{x, y}],
i.e. x ̸∼s y. □

Theorem 5.3.7. ∼s is an Aut(X)-condensation of X.

Proof. Since the condition “A ̸⪯ [{x, y}]” passes trivially to closed subintervals of
[{x, y}], we have that ∼s is a convex relation.

It follows from its definition that ∼s is reflexive and symmetric. For transitivity,
it is enough to check (by convexity) that if x < y < z and x ∼s y ∼s z, then x ∼s z.
If it were the case that x ̸∼s z, we would have A0→1 = A0 + A1 ⪯ [x, y]. But
any embedding witnessing A0 + A1 ⪯ [x, y] must witness that either A0 ⪯ [x, y]
or A1 ⪯ [y, z], contradicting x ∼s y ∼s z. Thus ∼s is transitive, and hence a
condensation of X.

It remains to show that ∼s is an Aut(X)-condensation. Let s : X → X/∼s

denote the condensation map. Fix x ∈ X and an automorphism g : X → X.
We check that x ∼s y if and only if g(x) ∼s g(y). Suppose we had x ∼s y

but g(x) ̸∼s g(y). Then A ⪯ [{g(x), g(y)}]. Since g−1 witnesses [{g(x), g(y)}] ⪯
[{x, y}], this gives A ⪯ [{x, y}], a contradiction. The backwards direction is sym-
metric. □

We call ∼s the self-similar condensation of X. As in the proof of Theorem 5.3.7,
going forward we will write s for the condensation map of this condensation, and
s(x) for the condensation class of a given x ∈ X.

We write Ns for the corresponding normal subgroup of Aut(X). That is, g ∈ Ns

if and only if g(x) ∼s x for all x ∈ X.
We conclude this subsection with the following proposition, which says that the

s-classes of X are densely ordered.

Proposition 5.3.8. X/∼s is dense.

Proof. We first show that each condensation class s(x) (viewed as an interval in X)
is negligible. If not, then for some x we have A−1 +A0 +A1 ⪯ s(x) by Proposition
5.3.4. But then A0 ⪯ [a, b] for some a < b in s(x), contradicting a ∼s b. It follows
s(x) is negligible.

To show density of X/∼s, suppose toward a contradiction that there are points
x, y ∈ X such that s(y) is the successor of s(x) in X/∼s, i.e. the interval s(y) is
right adjacent to the interval s(x) in X. Since x ̸∼s y, there is h ∈ Aut(X) such
that h[A0 + A1] ⊆ [x, y]. Then either h[A0] ⊆ s(x) or h[A1] ⊆ s(y), contradicting
the negligibility of one of these classes. □
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5.3.2. Double transitivity in Aut(X) ↷ X/∼s. In this section we prove that the
induced action of Aut(X) on the condensed order X/∼s is doubly transitively
derived (see Definition 5.1.11). This contrasts with the case when X = ZA is
internally non-splitting and the action Aut(X) ↷ X/∼bb is uniquely transitively
derived.

For this subsection only, we will say that an interval B ⊆ X is a bump segment
(or simply segment) if B = Ay,g for some g ∈ Aut(X) and y ∈ X with g(y) ̸= y.

Proposition 5.3.9. If B is a lengthy bump segment, then B is splitting.

Proof. Suppose B = Ay,g. We assume g is increasing, so that B = [y, g(y)); the
argument is symmetric if g is decreasing. Let Bn = Agn(y),g, so that B = B0. Then
Og(y) ∼= Z(Bn) ∼= ZB.

Since B0 is lengthy, we have that A0 +A1 ⪯ B0. In particular, A0 +A1 ⩽c B0,
which yields A0 + A1 ⩽c B0 + B1, which yields 2A ⩽c 2B. On the other hand,
since B0 + B1 is a bounded interval in X, we have B0 + B1 ⊆ Am→n for some
m ≤ n. Thus 2B ⩽c (m − n + 1)A. It now follows from Lemma 4.5.4 that since
2A ⩽c 2B ⩽c (m− n+ 1)A and A is splitting, that B is splitting as well. □

Observe that for a segment B = Ay,g, once we know that B is splitting, we can
witness this by an automorphism of X. Indeed, if we write Bm→n for the sum
Bm + · · · + Bn, then by the same argument as in the proof of Proposition 5.3.3
(applied to the orbital Og(y) ∼= ZB), there is an automorphism h of X such that
h[Bm→n] = B0 = B.

The following is a crucial lemma that we will need for our double transitivity
result. It says that if B = Ay,g is a lengthy segment, then we can find an auto-
morphism of X that looks like a pinched version of g on Og(y) and is the identity
elsewhere. The proof uses several of Lindenbaum’s arithmetic propositions from
Section 3.

Lemma 5.3.10. Suppose we have g ∈ Aut(X) and y ∈ X such that g is increasing
on Og(y) and such that the segment B = Ay,g is lengthy.

For n ∈ Z, let Bn = Agn(y),g. Identify Og(y) with the sum · · · + B−1 + B0 +
B1 + · · · = Z(Bn) and g with the +B map on Og(y).

Then for any fixed N ∈ Z, N > 1, if I ⊆ BN is a lengthy initial segment of BN ,
there is an automorphism g′ ∈ Aut(X) such that if we define B′

n = Ag′n(y),g′ for
n ∈ Z, then we have the following:

i. B′
n = Bn for n ≤ N − 1,

ii. The final segment B′
N +B′

N+1 + · · · of Og′(y) is an initial segment of I,
iii. g′ is the identity outside of Og′(y).

Proof. Since I is lengthy, we have B ⪯ I, so that I ∼= L + B + R for some initial
and final segments L,R of I. Thus BN

∼= I + J ∼= L + B + R + J for some final
segment J of BN .

Since BN is an isomorphic copy of B and BN
∼= L + B + (R + J), we have

by Proposition 3.2.3 that BN is isomorphic to its initial segment L + B. Hence
I ∼= B + R. In particular, I has an initial segment isomorphic to B. Since B is
splitting, that is, B ∼= B + B, we have in particular that B left absorbs B (see
Definition 3.1.1). By Proposition 3.1.5, B has an initial segment isomorphic to ωB.
Hence I also has an initial segment isomorphic to ωB. We write

I ∼= ωB +K ∼= B∗
0 +B∗

1 + · · ·+K,
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where each term B∗
i is a copy of B and K is the corresponding final segment of I.

Identify I with this sum.
For k ≥ 0, define B′

(N+k) = B∗
k . For n ≤ N − 1, define B′

n = Bn. Then the

Z-sum · · ·B′
−1 + B′

0 + B′
1 + B′

2 + · · · = Z(B′
n) is an initial segment of Og(y) that

terminates in an initial segment of I. Let g′ be any automorphism that takes each
term B′

n onto the subsequent term, and is the identity outside of Z(B′
n) = Og′(y),

then g′ satisfies conditions (i.), (ii.), and (iii.). □

Proposition 5.3.9 shows that every lengthy segment in X is splitting. To prove
our double transitivity result, we will need the fact that every segment in the
condensed order X/∼s is splitting. To prove this fact, we first need to understand
when disjoint intervals in X are condensed to disjoint intervals in X/∼s.

In general, if I = J +K is an interval in X, decomposed as a sum of some initial
segment J and final segment K, it may be that s[J ] ∩ s[K] ̸= ∅. This happens
precisely when there is x ∈ J whose condensation class s(x) is maximal in J but
not contained (as an interval) in J . In this case, a nonempty final segment of s(x)
intersects K, and we have s[J ] ∩ s[K] = {s(x)}.

Definition 5.3.11. We say that an interval I ⊆ X is s-closed if s(x) ⊆ I for every
x ∈ I; equivalently, if s−1[s[I]] = I.

Observe that if I is an s-closed interval, and we decompose I as a sum I = J+K
of an s-closed initial segment J and final segment K, then s[J ] and s[K] are disjoint
in X/∼s. Thus we have s[I] = s[J + K] = s[J ] + s[K] (that is, s[J ] is an initial
segment of s[I] with corresponding final segment s[K] = s[I] \ s[J ]).

We observe that, as we did with the ∼bb-condensation above, we may view ∼s

as being defined on X. For a gap y ∈ X \X, if y lies at the left or right of a class
s(x), or in the middle of such a class, we define s(y) = s(x). Since the s(x)-classes
are densely ordered, this definition is unambiguous. For y corresponding to a gap
in X/∼, we define s(y) = {y}. So extended, s is an Aut(X)-condensation of X,

and X/∼s is naturally isomorphic to X/∼s.
Thus we may view every condensation class s(x) as having left and right end-

points, though these endpoints may lie only in X (and coincide when s(x) = {x}).
When representing s(x) via the representative x, in many situations we may assume
without loss of generality that x is the left or right endpoint of s(x). It is often
convenient to work with such representatives.

For example, if x is the left endpoint of s(x) and g ∈ Aut(X), then g(x) must
be the left endpoint of s(g(x)) = g[s(x)]. Thus we have that g[s(x)] ̸= s(x) if and
only if g(x) ̸= x, if and only if the segment Ax,g is lengthy. Moreover, in this case,
observe that if g is increasing at x, then Ax,g = [x, g(x)) is s-closed: since g(x) is
leftmost in s(g(x)), we have s(y) ⊆ Ax,g for all x ≤ y < g(x). And in the case when
x is the right endpoint of s(x) and g is decreasing at x, we have symmetrically that
Ax,g is s-closed.

In analogy with the notation Ax,g, given ĝ ∈ Aut(X)/Ns and s(x) ∈ X/∼s such
that ĝ(s(x)) ̸= s(x), we write As(x),ĝ for the segment [s(x), ĝ(s(x))) in the case
when ĝ is increasing at s(x), or for the segment (ĝ(s(x)), s(x)] in the case when ĝ
is decreasing at s(x).

In the increasing case, if x is the left endpoint of s(x) inX, then by the discussion
above, the segment Ax,g of X is s-closed, and so includes the entirety of each
interval s(y) for x ≤ y < g(x). Thus, not only do we have s[Ax,g] = As(x),ĝ, but
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also s−1[As(x),ĝ] = Ax,g. Symmetrically, in the decreasing case, if x is the right

endpoint of s(x), we likewise have s[Ax,g] = As(x),ĝ and s−1[Zs(x),ĝ] = Ax,g.

The following proposition shows that every segment in X/∼s is splitting.

Proposition 5.3.12. Suppose we have ĝ ∈ Aut(X)/Ns and s(x) ∈ X/∼s such
that ĝ(s(x)) ̸= s(x). Then the segment As(x),ĝ is splitting.

Proof. We may assume ĝ(s(x)) > s(x), so that ĝ is increasing on Oĝ(s(x)); the
decreasing case is symmetric. We also assume that x is the left endpoint of s(x).
Since g moves the class s(x), Ax,g is lengthy. Write B = B0 for Ax,g and let
Bn = gn[Ax,g] = Agn(x),g. Then the segments Bn are also s-closed (being the
image of an s-closed segment under an automorphism of X) with left endpoints
gn(x).

Writing Y = Y0 for As(x),ĝ and Yn for ĝn[Y0] = Aĝn(s(x)),ĝ = As(gn(x)),ĝ we have

by our discussion above that s[Bn] = Yn and s−1[Yn] = Bn for all n ∈ Z. Since
B is lengthy, it is splitting, and more specifically there is h ∈ Aut(X) such that
h[B0 + B1] = B0. Then by s-closure of the segments involved, we have the chain
of equalities

Y0 = s[B0]
= s[h[B0 +B1]]

= ĥ[s[B0 +B1]]

= ĥ[s[B0] + s[B1]]

= ĥ[Y0 + Y1],

so that ĥ witnesses that Y0 = As(x),ĝ is splitting. □

Finally, here is our double transitivity result.

Theorem 5.3.13. The action Aut(X)/Ns ↷ X/∼s is doubly transitively derived.

Proof. We must show that this action is transitively derived, and the restricted
action on every orbit is doubly transitive.

Since X/∼s ̸∼= Z, to show that the action is transitively derived, it remains to

show that it is primitive. Fix s(x) ∈ X/∼s. We show primitivity by showing that

the Aut(X)/Ns-orbit of s(x) is dense in X/∼s.
We showed above that X/∼s is densely ordered, and since X has an irreducible

automorphism, both X and X/∼s do not have endpoints. It follows that we can
find a bounded, lengthy interval I ⊆ X such that s(x) ⊆ I.

Fix two points s(w) < s(z) in X/∼s, and assume that w and z are leftmost
in their s-classes. Then [w, z) is lengthy. By an easy modification of Proposition
5.3.6, there is h ∈ Aut(X) such that h[I] ⊆ [w, z). In particular h[s(x)] ⊆ [w, z). It
follows s(w) ≤ h[s(x)] < s(z) (viewing these classes as intervals in X). Passing to

X/∼s, this gives s(w) ≤ ĥ(s(x)) < s(z). Since s(w), s(z) were arbitrary, the orbit

of s(x) is dense in X/∼s, as desired.
We now prove double transitivity of the action on each orbit. Fix points s(a) <

s(b) and s(x) < s(y) inX/∼s, all in the same Aut(X)/Ns-orbit. We assume a, b, x, y
are the left endpoints of these classes.

Since these classes belong to the same orbit, there is ĝ ∈ Aut(X)/Ns such that
ĝ(s(a)) = s(x). We first show there is ĝ′ ∈ Aut(X)/Ns such that ĝ′(s(a)) = s(x)
and ĝ′(s(y)) = s(y).
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Assume a < x, the case when x < a is symmetric (if we work with right endpoints
of the s-classes instead). Since we are working with left endpoints, it follows from
ĝ(s(a)) = s(x) that g(a) = x. In particular, g is increasing at a. Write B = B0

for the segment Aa,g, and Bn for gn[B] = Agn(a),g. Write Y = Y0 for the segment
As(a),ĝ corresponding to B in X/∼s, and write Yn for ĝn[Y0]. Then by s-closure of

the segments Bn we have s[Bn] = Yn and s−1[Yn] = Bn for all n ∈ Z.
The segment B = [a, x) is lengthy, since a and x are in different s-classes. Let

N be the unique integer such that gN (a) < y ≤ gN+1(a). Then I = [gN (a), y)
is a lengthy initial segment of BN . And since a < x = g(a) < y, we also have
N > 1. By Lemma 5.3.10, we can find g′ ∈ Aut(X), increasing at a and the
identity outside of Og′(a), with segments B′

n = Bn for n ≤ N − 1, such that the
final segment B′

N +B′
N+1 + · · · of Og′(a) is an initial segment of [gN (a), y). Since

g′ still sends B−1 onto B0, it still sends a, the right endpoint of B−1, onto x, the
right endpoint of B0. Observe that the segments B′

n remain s-closed for all n, since
they are images of the s-closed interval B0 under an automorphism of X.

Passing to X/∼s, since g′(a) = x and g′(y) = y, we have ĝ′(s(a)) = s(x) and
ĝ′(s(y)) = s(y), as desired.

The argument from here proceeds in several ways depending on the location of
b relative to x and y. The most complicated case is when b ∈ Og′(a). In this case,
we necessarily have x < g′(b) < y, and hence also s(x) < ĝ′(s(b)) < s(y). Notice

ĝ′(s(b)) and s(y) also lie in the same Aut(X)/Ns-orbit, i.e. there is ĥ ∈ Aut(X)/Ns

(with representative h ∈ Aut(X)) with ĥ(ĝ′(s(b))) = s(y). By a similar argument
to the one given in the lemma, we can find an automorphism h′ ∈ Aut(X) such that

h′(g′(b)) = y such that h′(x) = x. Then ĥ′(ĝ′(s(b))) = s(y) and ĥ′(s(x)) = s(x).

Now letting e = h′g′ we have ê(s(a)) = ĥ′(s(x)) = s(x) and likewise ê(s(b)) =

ĥ′ĝ′(s(b)) = s(y), so ê witnesses double transitivity in this case.
The other cases are when b is above Og′(a) but still below y. In this case we

instead find h′ such that h′(b) = y and h′(x) = x. Then if e = h′g′, ê sends s(a)
onto s(x) and s(b) onto s(y), again witnessing double transitivity. Finally it may
be b ≥ y. If b = y, let h′ simply be the identity. If b > y, by a symmetric argument
to the one given in the lemma (replacing b and y with the right endpoints of their
s-classes) we can find h′ sending b to y that fixes x again. Then in either case
letting e = h′g′ yields an automorphism ê ∈ Aut(X)/Ns sending s(a) and s(b) onto
s(x) and s(y), respectively, as desired. □

6. Aronszajn’s commuting pairs theorem

In this section, we prove Aronszajn’s commuting pairs theorem. We begin by
describing an overview of the proof.

Suppose that A and B are a commuting pair of linear orders. Identify the sums
A + B and B + A and consider the Z-sum X = Z(A + B) = Z(B + A). Let h
denote the “+1” map on X, i.e. the natural map that takes every copy of A+ B,
or equivalently B +A, onto the subsequent one.

We will take a different approach in analyzing X than we did in analyzing the
Z-sums of the form ZA = ZB that appeared in Lindenbaum’s theorems. Instead of
considering the absolute structure of X by studying the full automorphism group
Aut(X), we will focus on the subgroup H ≤ Aut(X) generated by the “+A” map
f and “+B” map g.
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In contrast to the situation in Lindenbaum’s theorems, it is not as immediately
obvious that there are such maps on X. However, we will show that they exist, and
moreover, commute. Indeed (as is formally plausible) we have that fg = gf = h
(i.e. “(+A) + (+B) = (+B) + (+A) = +1”). We will also show that at least one
of the maps f and g is irreducible on X. If exactly one is irreducible, we will show
that A,B is a bi-absorbing pair. If both are irreducible, we will show that A,B is
an r-pair (see Definition 3.5.3) using Theorem 5.2.11.

In order to carry out this strategy, we first need to develop some of the basic
theory from Section 4 relative to the abelian subgroup H ≤ Aut(X). Specifically,
we will define a version of the bubble condensation ∼b relative to H, and prove
analogues of several results from Section 4.1 as well as the analogue of Theorem
4.5.7 for this relative bubble condensation. This is done in Section 6.1 below. The
proof of Aronszajn’s theorem follows in Section 6.2.

6.1. Abelian subgroups H ≤ Aut(X). For this subsection, let X again denote
an arbitrary but fixed linear order.

We can think of an automorphism f : X → X as being decomposable into bumps
and fixed points. That is, if x is not a fixed point of f , one can consider the bump
g that agrees with f on Of (x) and is the identity elsewhere (so that in particular
O(g) = Of (x)). Call such a g an f -bump. We can think of f as being composed of
its f -bumps along with its fixed points. It is itself a bump if and only if there is
only one f -bump.

Notice that f is non-irreducible if and only if all of its f -bumps are bounded.
It follows that we can equivalently define the bubble condensation ∼b by the rule
x ∼b y if there exists a non-irreducible f ∈ Aut(X) such that x and y belong to
the same f -bump, i.e. such that Of (x) = Of (y).

A feature of this definition of ∼b is that it can be relativized to any subgroup
H ≤ Aut(X).

Definition 6.1.1. Given a subgroup H ≤ Aut(X), define a relation ∼bH on X by
the rule x ∼bH y if there is a non-irreducible f ∈ H such that Of (x) = Of (y).

The relation ∼bH depends on the subgroup H, and in general it may be that
∼bH is not even a condensation of X, much less an H-condensation. One issue is
that the f -bumps of a given f ∈ H need not themselves belong to H. We will show
however that ∼bH is an H-condensation when H is abelian.

We first need some basic facts about commuting pairs of automorphisms. The
following lemma says that if f and g are commuting on X, then they are also
commuting on its completion X.

Lemma 6.1.2. Suppose f and g are automorphisms of X such that gf(x) = fg(x)
for all x ∈ X. Then, identifying f and g with their unique extensions to X, we
have gf(x) = fg(x) for all x ∈ X.

Proof. Suppose x ∈ X \X is a gap in X, say x = (I, J) where (I, J) is the cut in
X determining x. Then gf(x) = (gf [I], gf [J ]) = (fg[I], fg[J ]) = fg(x). □

For intervals I and J of a linear order X, we say that I and J cross if I ̸< J ,
J ̸< I, I ̸⊆ J , and J ̸⊆ I. Equivalently, I and J cross if none of I \ J , J \ I, and
I ∩ J are empty. If I and J cross, then either I \ J < J \ I or J \ I < I \ J . In
the former case we say that I is weakly left of J and J is weakly right of I; we use
symmetric language in the latter case.
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The next lemma shows that the orbital structure of a commuting pair of auto-
morphisms is strongly restricted.

Lemma 6.1.3. Suppose that f and g are commuting automorphisms of X. Then
for any points x, y ∈ X the orbitals Of (x) and Og(y) do not cross.

Proof. Suppose toward a contradiction there are x, y ∈ X such that the orbitals
O = Of (x) and N = Og(y) cross. Since O and N cross, it cannot be that either of
these intervals is a singleton, that is, x is not a fixed point of f and y is not a fixed
point of g. Thus f and g are irreducible on O and N respectively, and O and N
are open intervals. Without loss of generality we may assume O is weakly left of
N . Replacing f and g with their inverses if necessary, we may assume that f and
g are increasing on O and N respectively.

Let z ∈ X denote the greatest lower bound of N (i.e. the “left endpoint” of N ,
which always exists in X). Since g[N ] = N , z is the left endpoint of N , and g is an
order-automorphism, we must have that g(z) = z. Hence fg(z) = f(z). Since O is
weakly left of N and f is increasing on O, we have z ∈ O, f(z) > z, and f(z) ∈ N .
Since g is increasing on N we have gf(z) > f(z). But then gf(z) ̸= f(z) = fg(z),
contradicting that f and g commute. □

Now we turn to showing ∼bH is an H-condensation when H is abelian. Here is
a basic observation we will need.

Lemma 6.1.4. SupposeH ≤ Aut(X) is abelian and g ∈ H. Then the condensation
determined by the orbitals of g is an H-condensation. That is, for every x ∈ X and
f ∈ H we have f [Og(x)] = Og(f(x)).

Proof. As we observed in Section 4.1, we always have f [Og(x)] = Ofgf−1(f(x)).
Since H is abelian, this gives immediately f [Og(x)] = Og(f(x)). □

With these lemmas in hand, we can prove that ∼bH is an H-condensation for
abelian H.

Theorem 6.1.5. Suppose that H ≤ Aut(X) is an abelian group of automorphisms
of X. Then ∼bH is an H-condensation.

Proof. We first check that ∼bH is a condensation, i.e. a convex equivalence relation
on X. Reflexivity, symmetry, and convexity of ∼bH are immediate from its defini-
tion. To check transitivity, suppose x ∼bH y ∼bH z. By the convexity of ∼bH , we
may assume that either x < y < z or z < y < x. Since these cases are symmetric,
we assume x < y < z.

By definition of ∼bH there are f, g ∈ H such that Of (x) = Of (y) and Og(y) =
Og(z). Since the orbitals Of (y) and Og(y) have non-empty intersection, it must be
by Lemma 6.1.3 that one is contained in the other. Thus either Of (x) = Of (z) or
Og(x) = Og(z), which gives x ∼bH z, as desired. Thus ∼bH is a condensation of X,
as claimed. Let bH denote the corresponding condensation map.

We now check that it is an H-condensation. Fix x ∈ X and f ∈ H. We must
check that f [bH(x)] = bH(f(x)). Let NbH denote the set of non-irreducible elements
of H. Notice that by definition of ∼bH we have

bH(x) =
⋃

g∈NbH

Og(x).
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Thus
f [bH(x)] = f [

⋃
g∈NbH

Og(x)]

=
⋃

g∈NbH
f [Og(x)]

=
⋃

g∈NbH
Og(f(x))

= bH(f(x)),

where the third equality follows from Lemma 6.1.4. Thus∼bH is anH-condensation,
as desired. □

Our next goal is to show that whenH ≤ Aut(X) is abelian, the condensation∼bH

behaves similarly with respect to the action of H on X as the bubble condensation
∼b does with respect to the action of the full automorphism group Aut(X) on X
in the case when X is internally non-splitting. Roughly speaking, since ∼bH “mods
out” any non-irreducible automorphisms action by H, we expect H to act purely
irreducibly onX/∼bH . More precisely, we have the following analogues of Theorems
4.5.6 and 4.5.7.

Theorem 6.1.6. Suppose H ≤ Aut(X) is abelian and f ∈ H is irreducible. Then
for any x ∈ X we have x ̸∼bH f(x).

Proof. If x ∼bH f(x) then there is a non-irreducible g ∈ H such that Og(x) =
Og(f(x)). But Og(f(x)) = f [Og(x)] by Lemma 6.1.4. Hence by induction we
have Og(x) = fn[Og(x)] for every n ∈ Z. Since fn[Og(x)] = Og(f

n(x)), this
gives that fn(x) ∈ Og(x) for every n ∈ Z. Since f is irreducible, the Z-sequence
{fn(x) : n ∈ Z} is unbounded in both directions in X. Since Og(x) is convex
and contains this sequence, it must be that Og(x) = X, contradicting that g is
non-irreducible. □

Theorem 6.1.7. Suppose that H ≤ Aut(X) is abelian. Let NbH denote the kernel
of the induced action H ↷ X/∼bH . Then we have the following:

1. f ∈ NbH if and only if f ∈ H and f is non-irreducible,
2. H/NbH acts freely by irreducible automorphisms on X/∼bH ,
3. H/NbH is isomorphic to a subgroup H ′ of (R,+).

Proof. (1.) If f ∈ H is non-irreducible, then by definition of ∼bH we have x ∼bH

f(x) for every x ∈ X, i.e. f ∈ NbH . If f is irreducible, then f ̸∈ NbH by Theorem
6.1.6.

The arguments for (2.) and (3.) are similar to the corresponding parts in the
proof of Theorem 4.5.7. □

We note Theorem 6.1.7 is nontrivial only if H contains at least one irreducible
automorphism. The next proposition says that when H does contain such an au-
tomorphism, we have the analogue of Corollary 4.5.13 for bH .

Theorem 6.1.8. Suppose that H ≤ Aut(X) is abelian. Let NbH denote the
kernel of the induced action H ↷ X/∼bH . Suppose that f ∈ H is increasing and

irreducible and x ∈ X. Write f̂ for the quotient class fNbH .

Then for any g ∈ f̂ and y ∈ Hx we have Ax,f
∼= Ay,g.

Proof. For the argument in Subsection 4.5 preceding Corollary 4.5.13 we needed
only that ∼b is an Aut(X)-condensation and that Aut(X)/Nb is abelian. Since ∼bH

is an H-condensation and H/NbH is abelian, the argument goes through otherwise
verbatim if we replace b by bH everywhere. □
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6.2. Proof of Aronszajn’s theorem.

Theorem 6.2.1. (Aronszajn’s commuting pairs theorem) Suppose that A and B
are a commuting pair of linear orders. Then either A and B are a bi-absorbing
pair, or A and B are an r-pair for some r, 0 < r < 1.

Proof. Fix an isomorphism i : A+ B → B + A. We identify A+ B and B + A by
identifying each x ∈ A+B with i(x). We also write B+A as B∗+A∗ to distinguish
the copies of B = B∗ and A = A∗ appearing in this order from the copies appearing
in A+B.

Define X = Z(A+B) = Z(B+A) = Z(B∗+A∗). We write An+Bn for the nth
copy of A + B in X, and likewise B∗

n + A∗
n for the nth copy of B + A = B∗ + A∗

in X. By our identification we have An +Bn = B∗
n +A∗

n. We write:

X = · · ·+ (A−1 +B−1) + (A0 +B0) + (A1 +B1) + (A2 +B2) + · · ·
= · · ·+ (B∗

−1 +A∗
−1) + (B∗

0 +A∗
0) + (B∗

1 +A∗
1) + (B∗

2 +A∗
2) + · · · .

We now define the “+A” and “+B” maps f and g. We have An+Bn
∼= A∗

n+B∗
n+1

for every n. Let g : X → X be the natural map that witnesses this isomorphism for
every n, so that g[An] = A∗

n and g[Bn] = B∗
n+1, and thus g[An+Bn] = A∗

n+B∗
n+1,

for every n. Observe that g is an automorphism of X, and moreover by definition,
g is increasing (i.e. g(x) > x for all x ∈ X). Since B∗

n+1 lies directly to the right of
Bn in X, we can think of g as a “+B” map.

Similarly, we have B∗
n + A∗

n
∼= Bn + An+1 for every n. Let f : X → X be

the natural map that witnesses this isomorphism for every n, so that f [B∗
n] = Bn,

f [A∗
n] = An+1, and thus f [B∗

n + A∗
n] = Bn + An+1, for every n. Then f is also an

increasing automorphism of X. Since An+1 lies directly to the right of A∗
n in X for

every n, we can think of f as a “+A” map.
Let h denote the “+1” automorphism of X, i.e. the natural map witnessing

An + Bn
∼= An+1 + Bn+1 (or equivalently B∗

n + A∗
n
∼= B∗

n+1 + A∗
n+1) for every n.

Thus we have h[An] = An+1, h[Bn] = Bn+1, h[A
∗
n] = A∗

n+1, and h[B∗
n] = B∗

n+1, for
every n. Then h is an automorphism of X. Observe that h is not only increasing,
but also irreducible.

We claim that f and g commute, and indeed that fg = gf = h. Observe that
for every n, we have the following:

fg[An] = f [A∗
n] = An+1 = h[An],

fg[Bn] = f [B∗
n+1] = Bn+1 = h[Bn],

gf [A∗
n] = g[An+1] = A∗

n+1 = h[A∗
n+1],

gf [B∗
n] = g[Bn+1] = B∗

n+1 = h[B∗
n+1].

Thus f and g commute and equal h setwise on An, Bn, A
∗
n, and B∗

n, for every n.
We leave it to the reader to give the natural pointwise definitions of the maps f, g,
and h and verify that the identities fg = gf = h also hold pointwise.

Let H = ⟨f, g⟩ be the subgroup of Aut(X) generated by the maps f and g. Then
H is abelian, since f and g commute. Every element of H can be represented as a
product fngm for some m,n ∈ Z. Since fg = gf = h, a product fmgn can also be
represented as hmg(n−m) or hnf (m−n).

While f and g are increasing onX by their definition, this does not imply directly
that f and g are irreducible, since they may fix gaps. Our next goal is to show
however that at least one of f and g is irreducible. This is intuitively plausible,
since fg = gf = h and h is irreducible.
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Claim 6.2.2. At least one of f and g is irreducible on X.

Proof. Suppose toward a contradiction that neither f nor g is irreducible on X.
Then every orbital of f and every orbital of g is bounded on at least one side in
X. Fix x, y ∈ X and let O = Of (x) and N = Og(y). Since f and g commute, by
Lemma 6.1.3 we have that O and N do not cross. Thus either O < N , N < O,
O ⊆ N , or N ⊆ O.

Suppose first that O < N . Then fn(x) < N for every n ∈ Z. Since g[N ] = N
and g is an automorphism of X, we have gn(z) < N for every z < N and n ∈ Z.
Hence gnfn(x) < N for every n ∈ Z, i.e. hn(x) < N for every n ∈ Z, contradicting
that h is irreducible on X. The argument is symmetric when N < O.

Now suppose O ⊆ N . Without loss of generality, we may assume that N is
bounded to the right in X, so that there is some z ∈ X with N < z. We have
fn(x) ∈ O ⊆ N for every n ∈ Z, and hence hn(x) = gnfn(x) ∈ N for every n ∈ Z.
But then hn(x) is always below z, contradicting again that h is irreducible. If
instead N ⊆ O, the argument is symmetric. □

We now can finish the proof the Aronszajn’s theorem. There are two cases.

Case 1: Exactly one of the maps f and g is irreducible.

We will prove in this case that A and B are a bi-absorbing pair. Suppose without
loss of generality that g is non-irreducible. We prove that A bi-absorbs B.

We first observe that h moves every g-orbit to the right. More precisely, for any
x ∈ X by Lemma 6.1.4 we have h[Og(x)] = Og(h(x)). Since h is irreducible, we
have x ̸∼bH h(x) by Theorem 6.1.6, and it follows that Og(x)∩Og(h(x)) = ∅. Since
h is increasing, we must have Og(x) < Og(h(x)) = h[Og(x)].

To see that A bi-absorbs B, we will construct an initial segment of A that is
isomorphic to ωB and a disjoint final segment of A that is isomorphic to ω∗B.

By definition of g we have g[B0] = B∗
1 . By definition ofX, B∗

1 lies immediately to
the right of B0 in X. It follows that gn+1[B0] lies immediately to the right of gn[B0]
for every n ∈ Z. Fixing any x ∈ B0, it follows that the intervals gn[B0] decompose
Of (x) as a Z-sum of copies of B, i.e. we can view Of (x) as a replacement of Z by
these copies. We write Og(x) ∼= Z(gn[B0]).

Now consider h(x) ∈ h[B0] = B1. By a similar argument we have that h[Og(x)] =
Og(h(x)) is decomposed into a Z-sum of copies of B by the intervals gn[B1]. We
write Og(h(x)) ∼= Z(gn[B1]). By our observations above, these two Z-sums are
disjoint, and the first lies to the left of the second. Hence we have in particular that
g[B0] + g2[B0] + · · · lies entirely to the left of · · · + g−2[B1] + g−1[B1]. It follows
that both of these sums fall between B0 and B1, i.e. in A1, and indeed the first
must be an initial segment of A1 and the second a final segment. Since the first
sum is isomorphic to ωB and the second to ω∗B and these sums do not cross, we
have that A1 (and hence A) has an initial segment isomorphic to ωB and a disjoint
final segment isomorphic to ω∗B, i.e. A ∼= ωB+M +ω∗B for some middle segment
M . By Proposition 3.1.5, A bi-absorbs B, as desired.

Case 2: Both of the maps f and g are irreducible.

We will show in this case that A and B form an r-pair. Our tools will be the
condensation ∼bH and Theorem 5.2.11.

Since H is abelian, ∼bH is an H-condensation of X by Theorem 6.1.5. As in
Theorem 6.1.7, let NbH denote the kernel of the induced action H ↷ X/∼bH . For
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every k ∈ H, let k̂ denote the quotient class kNbH ∈ H/NbH . By Theorem 6.1.7,
H/NbH acts freely by irreducible automorphisms onX/∼bH and hence is isomorphic
to a subgroup of (R,+).

Suppose first that either A0 has a left endpoint or there is a gap at the left of
A0 (i.e. the greatest lower bound of A0 in X is not the right endpoint of B−1, if
such a right endpoint exists), and let x denote this point or gap. The remaining
case when A0 has no left endpoint but B−1 has a right endpoint can be handled
similarly. Then, f(x) is either the left endpoint of B0 or the gap at the left of B0,
respectively, and h(x) is the left endpoint or gap at the left of A1. Observe that
A0 = Ax,f and B∗

0 = Ax,g. Thus A ∼= Ax,f and B ∼= Ax,g

There are two cases. The first is that H/NbH is of discrete type, say H = ⟨k̂⟩ for
some irreducible k ∈ H. We may assume k is increasing. Then for some positive

integers m,n ∈ Z we have k̂m = f̂ and k̂n = ĝ.

Let C = Ax,k. We have Ax,km ∼= mAx,k = mC. Since f̂ = k̂m = k̂m we
have by Theorem 6.1.8 that Ax,f

∼= Ax,km , which gives A ∼= mC. Similarly we
have B ∼= nC. Thus A,B is a rational r-pair by the discussion following 3.5.4, as
desired.

The other possibility is that H/NbH is of dense type. Consider the top part
H/NbH ↷t X of the original action H ↷ X (see Definition 4.2.6). Observe that
this top action on X is also by irreducible automorphisms.

For simplicity, identify H/NbH with the dense subgroup H ′ of R to which it
is isomorphic, and view this subgroup as acting by irreducible automorphisms on

X. We may assume that under this identification, ĥ is identified with 1. Then

f̂ must be identified with some irrational r with 0 < r < 1 (if r were rational,

H/NbH = ⟨f̂ , ĥ⟩ would be discrete).
Following the proof of Theorem 5.2.11, let Y = X/∼bb, and let 1Y = bb(x). Then

the proof constructs a replacement R(I[s]) of R up to the orbit equivalence relation
of H ′ such that X ′ ∼= R(I[s]), and under this isomorphism bb(x) is mapped onto I0
and bb(h(x)) is mapped onto I1.

Identify X with this replacement, and view H ′ as acting directly on X via the
lift action. Then by letting L = {y ∈ I0 : y < x} and R = {y ∈ I0 : y ≥ x}, we have
that I0 ∼= L+R. Since r and 1 are in the H-orbit of 0, we have Ir ∼= I1 ∼= L+R as
well. By choice of x we have A0

∼= R+(0, r)(I[s])+L and B0
∼= R+(r, 1)(I[s])+L,

which verifies that A and B form an r-pair in this case as well. □
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