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Goal: Describe a generalization of a graph in which edges are
replaced by filters on an underlying infinite vertex set, and flows of
point masses along edges are replaced by flows of ultrafilters along
these “filter edges.”

The point: Can prove the analogue of the max-flow/min-cut
theorem in these generalized graphs.

Along the way: We'll bring a well-studied concept from finite
combinatorics — that of a submodular function — into an
infinitary context.



A prototype flow: Koénig's lemma

Konig’s lemma:

If G =(V,E)is a locally finite graph and x is vertex in G
belonging to an infinite connected component of G, then there is
an infinite path through G whose initial vertex is x.

Note: we'll take path to mean edge path, i.e. a sequence of
pairwise distinct, consecutively adjacent edges.

Edge paths can have repeated vertices, but by local finiteness every
vertex in an edge path is repeated only finitely many times.



A reformulation of Kénig's lemma

Koénig's lemma:

Suppose G = (V/, E) is a locally finite graph and x € V. If for
every finite X C V with x € X we have [9(X)| > 1, then there is
an infinite path through G whose initial vertex is x.

Here: 0(X) is the edge boundary of X:

J(X) = {e € E : exactly one end of e is in X}.



The point: Saying x belongs to an infinite connected component
of G is the same as saying that every finite neighborhood X of x
has at least one edge on its boundary.

The path guaranteed by Konig's lemma witnesses this boundary
condition: it selects at least one boundary edge (by passing
through it) of every finite neighborhood X of x.



A generalization of Kénig's lemma

Konig’s lemma for 2 paths:
Suppose G is a locally finite graph and x € V. If for every finite
X C V with x € X we have |9(X)| > 2, then there are two disjoint

infinite paths through G both with initial vertex x.



Going further

Nothing special about n = 2, or starting with only a single initial
vertex Xx.

We can generalize Kénig's lemma to get larger systems of disjoint
paths (“flows”) in locally finite

» graphs,

P directed graphs,

P directed hypergraphs,
> and...?

We will index our paths by placing units of mass at their initial
vertices. Each path will carry one unit “out to infinity.”



Mass assignments

Def’'n: Suppose G = (V, E) is our locally finite graph. A mass
assignment is a function v: V — N.

Two mass assignments of total mass 2.

DA



Mass assignments are measures

> We can extend u to sets of vertices by defining
u(X) = ex u(x) for X C V.
» So extended, u is a finitely additive measure.

» The finite additivity of u can be reformulated as an equivalent
condition called modularity:

u(XUY)+uXNY)=u(lX)+u(Y)

forall X, Y C V.



Feasible mass assignments

Question: Which mass assignments allow us to send the units of
mass along pairwise edge-disjoint paths?

» If uis a mass assignment, and for some finite set of vertices X
we have u(X) > |9(X)|, we can't possibly send the units of
mass in X along edge-disjoint paths out of X.

» The max-flow/min-cut theorem says, just as in Kénig's

lemma, this is the only restriction to finding such a system of
paths.



Feasible mass assignments

Def’'n: A mass assignment u is called feasible if for every finite
X C V we have u(X) < [0(X).



Cutting and flowing

A max-flow/min-cut theorem:

Suppose G = (V/, E) is a locally finite graph and v is a feasible
mass assignment on V. Then there is a system P of pairwise
edge-disjoint infinite paths P such that for every x € V the
number of paths beginning at x is exactly u(x).

(Note: this theorem can be relativized if we insist our paths all flow toward a specific end E of G, or more
generally, any closed set of ends.)



The key: submodularity of 0

The proof of max-flow/min-cut depends crucially on the
submodularity of the boundary function X — |0(X)).

Let's forget about graphs for the moment and approach
submodularity abstractly.

We'll see that certain simple submodular functions resemble edges
in a graph.



Submodularity

Suppose that V is a set, and let 2V denote its powerset.

Def’n: A function f : 2¥ — N is called submodular if for all
X,Y C V we have

FIXUY)+FXNY)<FX)+ F(Y).

Notice: sums of submodular functions are submodular (just as
sums of measures are measures).



{0, 1}-valued submodular functions

In general, submodular functions can be complicated. But 2-valued
submodular functions can be completely characterized!

Example: Fix A, B C V. Define a function 14_,5 on 2" by

lase(X) = 0 if AnNX =0or BCX,
1a-8(X) 1 fANX#0and B¢Z X.

i.e. 1a,g(X) = 1iff X intersects A and does not completely
contain B.

Can check: 14,5 is submodular.
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{0, 1}-valued submodular functions

It turns out these are the only* examples of 2-valued submodular
functions — on finite domains.

Theorem: Suppose that V is a finite set and f : 2¥ — {0,1} is
submodular. Then f =14_,5 for some A,B C V.

*not quite true: e.g. to define the constant 1 function, need a slight modification.



14_.p as an edge indicator

What do the 15_,5's have to do with graphs?

» If A= {a} and B = {b} for some distinct a, b € V, we can
think of the pair (a, b) as a directed edge from a to b.

» Then 14,5 indicates whether this edge is on the (outgoing)
edge boundary of the input set X.

» if G is a locally finite directed graph, viewed as a collection of
directed edges (aj, b;), then F =3 1,1 .14 is the directed
edge boundary function |0| for G.



Q>



14_.p as an edge indicator

» If A= B = {a, b} for some distinct a, b € V, we can think of
the pair {a, b} as an undirected edge between a and b.

» Then 14 .5 indicates whether this edge is on the edge
boundary of the input set X.

» if G is a locally finite graph, viewed as a collection of
undirected edges {a;, bi}, then F =3 .11, 1,1 i1, 5y is the
edge boundary function |9| for G.






14_.p as an edge indicator

» In general we can think of a pair of subsets (A, B) as a
directed hyperedge from A to B, and the function 14, as
indicating whether this hyperedge is on the outgoing boundary
of the input set.

> We think of a collection of directed hyperedges
G = {(Aj, B;)} as a directed hypergraph.

» Then the function F =) .14_,p, is the outgoing edge
boundary function |9| for G.

e ((A‘,\YJ/(AL,V'JS



From hypergraphs to filter graphs

We can further generalize the notion of an edge.

Example: Suppose V is an infinite vertex set. Fix two filters F,G
on V. Define a function 17_,g : 2 — {0,1} by

1r,g(X) = 0 ifX eForXeg,
1r.g(X) = 1 fX°¢FandX€&g.

i.e. 1rg(X) = 1iff X is F-positive and X€ is G-positive.

Can check: 1r_,g is submodular.



{0, 1}-valued submodular functions on infinite domains

It turns out these are the only (essentially) examples of 2-valued
submodular functions — full stop!

Theorem (E.): Suppose that V is a set and f : 2¥ — {0,1} is
submodular. Then f = 1x_,5 for some filters 7,G on V.

Huh!



Filter graphs

» We can think of a pair of filters (F,G) on V as a
generalization of a directed edge in a hypergraph.

» (By the previous slide, this is the most general definition
possible, if by “edge” we mean something with a 2-valued
submodular indicator.)

» For X C V, we think of the value 1x_,g(X) as indicating
whether this edge is on the outgoing boundary of X.

» Let's call a collection of these edges G = {(F;,Gi)} a filter
graph on V.

» Then the function F =) 17,_,g, is the edge boundary
function for G.



Generalizing mass assignments

» Before, mass assignments were sums of point masses (i.e.
sums of principal ultrafilter measures).

> We now define more generally a mass assignment u : 2¥ — N
to be any function of the form u = )" u;, where each u; is the
measure associated to an ultrafilter Uf;.

» u is feasible with respect to the boundary function
F=> 15, if u(X) < F(X) forall X C V.

Can check: if u =), uj is a feasible mass assignment (with
associated ultrafilters U;), then every U; extends some F; (i.e. all
“point-masses” sit on the outgoing side of at least one “edge”).



Generalizing local finiteness and paths

» Call a filter graph G = {(F;,G;)} locally finite if there is no
ultrafilter U extending infinitely many of the F; (i.e. if there
can be no point-mass sitting on the outgoing side of infinitely
many edges).

» A path is a sequence of edges (F1,G1), (F2,G2),. .. such that
every X € G; is Fj1-positive.



Max-flow /min-cut for filter graphs

Theorem (E.): Suppose G = {(Fi,Gi)} is a locally finite filter
graph on the vertex set V and u =) u; is a feasible mass
assignment on V' (with associated ultrafilters U{;).

Then there is a system P of pairwise disjoint infinite paths P such
that for every X C V,

the number of ultrafilters Uf; for which X € U; (i.e. the amount of
mass assigned to X)

the number of paths (Fi,G1), (F2,G2), ... for which X is
Fi-positive (i.e. the number of paths beginning in X).



Questions

1. Do filter graphs occur naturally?

2. To what extent does the theory of submodular functions more
generally extend if we replace every graph in sight with a filter
graph and every point mass in sight with an ultrafilter
measure?

A guess: many results should extend once reformulated
correctly.

3. What if we consider submodular functions on standard
measure spaces (e.g. R"”) and consider continuous measures
as mass assignments?

A dream: there should be a nice theory here, including some
max-flow theorems.



Thank you!



